Difference between revisions of "Olson land map"

From Geos-chem
Jump to: navigation, search
(Structure of the vegtype.global file)
(Structure of the vegtype.global file)
Line 155: Line 155:
 
|}
 
|}
  
NOTES:
+
'''NOTES:'''
  
 
#The reason why there are two sets of arrays (<tt>IREG, ILAND, IUSE</tt>) and (<tt>IJREG, IJLAND, IJUSE</tt>) is purely historical baggage.  This usage dates back to the original Harvard/GISS CTM, from which we obtained the GEOS-Chem dry deposition and soil NOx emissions modules.  The dry deposition routine DEPVEL takes 1-D vectors of size <tt>IIPAR*JJPAR</tt> as its spatial dimension, instead of using 2 separate spatial dimensions.  Nobody has undertaken to rewrite this code since.
 
#The reason why there are two sets of arrays (<tt>IREG, ILAND, IUSE</tt>) and (<tt>IJREG, IJLAND, IJUSE</tt>) is purely historical baggage.  This usage dates back to the original Harvard/GISS CTM, from which we obtained the GEOS-Chem dry deposition and soil NOx emissions modules.  The dry deposition routine DEPVEL takes 1-D vectors of size <tt>IIPAR*JJPAR</tt> as its spatial dimension, instead of using 2 separate spatial dimensions.  Nobody has undertaken to rewrite this code since.

Revision as of 14:21, 22 March 2012

On this page we discuss the land map from Jennifer Olson that is currently used by the GEOS-Chem Dry deposition and Soil NOx emissions modules.

Overview

Description of land map

The GEOS-Chem Dry deposition and Soil NOx emissions modules rely on the Olson (1992) land map. This map specifies 74 different land types on the 0.5° x 0.5° GENERIC GRID, which is defined by:

Lon centers = -179.75, -179.25, -178.75, -178.25, ... 178.25, 178.75, 179.25, 179.75
Lat centers =  -89.75,  -89.25,  -88.75,  -88.25, ...  88.25,  88.75,  89.25,  89.75

The Olson 1992 map contains 74 individual land types:

  0 Water              25 Deciduous           50 Desert
  1 Urban              26 Deciduous           51 Desert
  2 Shrub              27 Conifer             52 Steppe
  3 ---                28 Dwarf forest        53 Tundra
  4 ---                29 Trop. broadleaf     54 rainforest
  5 ---                30 Agricultural        55 mixed wood/open
  6 Trop. evergreen    31 Agricultural        56 mixed wood/open
  7 ---                32 Dec. woodland       57 mixed wood/open
  8 Desert             33 Trop. rainforest    58 mixed wood/open
  9 ---                34 ---                 59 mixed wood/open
 10 ---                35 ---                 60 conifers
 11 ---                36 Rice paddies        61 conifers
 12 ---                37 agric               62 conifers
 13 ---                38 agric               63 Wooded tundra
 14 ---                39 agric.              64 Moor
 15 ---                40 shrub/grass         65 coastal
 16 Scrub              41 shrub/grass         66 coastal
 17 Ice                42 shrub/grass         67 coastal
 18 ---                43 shrub/grass         68 coastal
 19 ---                44 shrub/grass         69 desert
 20 Conifer            45 wetland             70 ice
 21 Conifer            46 scrub               71 salt flats
 22 Conifer            47 scrub               72 wetland
 23 Conifer/Deciduous  48 scrub               73 water
 24 Deciduous/Conifer  49 scrub

which are plotted here. Only one land type is assigned to an 0.5° x 0.5° grid box.

Olson1992.png

--Bob Y. 10:12, 22 March 2012 (EDT)

Preparation of input files for GEOS-Chem

The raw Olson land map data are stored in the file owe14d.0.5 (which is now archived in Bob Yantosca's disk space). This was an ASCII file containing 20 integer values per line (Fortran format '(20i4)').

The IDL routine REGRIDH_LAI (which is distributed as part of the GAMAP package) was used to prepare the Olson land map for input into GEOS-Chem. REGRIDH_LAI read these files as input:

  1. owe14d.0.5: Olson land map file at 0.5° x 0.5° resolution
  2. lai_all.dat: leaf area index data at 1° x 1° resolution

and created these files as output:

  1. vegtype.global: Olson land map indices, on the GEOS-Chem grid
  2. laiMM.global: leaf area index files, on the GEOS-Chem grid (MM = 01 .. 12)

Therefore, REGRIDH_LAI had to be called several times in order to create the proper vegtype.global files for each different GEOS-Chem grid configuration. (4° x 5°, 2° x 2.5°, and the 0.5° x 0.666° nested grids).

NOTE: The original leaf area index data has now been supplanted by those from the MODIS satellite instrument.

Structure of the vegtype.global file

As mentioned above, each GEOS-Chem grid configuration required its own vegtype.global file. The vegtype.global file contained the following information:

  1. GEOS-Chem grid box longitude index (I)
  2. GEOS-Chem Grid box latitude index (J)
  3. Number of Olson land types (at 0.5° x 0.5° resolution) that fit inside the GEOS-Chem grid box (I,J)
  4. List of indices of all Olson land types that fit inside the GEOS-Chem grid box (I,J)
  5. Fraction (in mils) of the GEOS-Chem grid box covered by each Olson land type

Each of these quantities was represented as an integer value (with 20 integer values per line). Therefore, a quick look at the 4° x 5° vegtype.global file would reveal the following text:

 ...
 20  13   1   01000
 21  13   1   01000
 22  13   5   0  41  24  31  67 811  25  62  76  26
 23  13   4  41  24  52  31 137 175 650  38
 24  13   5  52   8   0  41  31 589  62 298  25  26
 ... etc.

From the snippet of the vegtype.global file shown above, we would deduce that

GEOS-Chem grid box has this many Olson land types with indices which cover this % of the box
(20,13) 1 0 100%
(21,13) 1 0 100%
(22,13) 5 0, 41, 24, 31, 67 81.1%, 2.5%, 6.2%, 7.6%, 2.6%, respectively
(23,13) 4 41, 24, 52, 31 13.7%, 17.5%, 65.0%, 3.8%, respectively
(24,13) 5 52, 8, 0, 41, 31 58.9%, 6.2%, 29.8%, 2.5% and 2.6%, respectively


GEOS-Chem routine rdland.F reads the information from the vegtype.global into the following arrays:

Array Quantity Where used
IREG( I, J ) Number of Olson land types per GEOS-Chem grid box
(i.e. Column #2 in the table above)
Soil NOx emissions
ILAND( I, J, 1:IREG(I,J) ) List of Olson land type indices per each GEOS-Chem grid box
(i.e. Column #3 in the table above)
Soil NOx emissions
IUSE( I, J, 1:IREG(I,J) ) Fraction (in mils) of the GEOS-Chem grid box covered by each Olson land type
(i.e. Column #4 in the table above)
Soil NOx emissions
IJREG( IJLOOP ) Same data as in IREG, but with 1 spatial dimension Dry deposition
ILAND( IJLOOP, 1:IJREG(I,J) ) Same data as in ILAND, but with 1 spatial dimension Dry deposition
IJUSE( IJLOOP, 1:IJREG(I,J) ) Same data as in IUSE, but with 1 spatial dimension Dry deposition
FRCLND( I, J ) Fraction of each GEOS-Chem grid box that is not water (computed from IUSE) Several locations

NOTES:

  1. The reason why there are two sets of arrays (IREG, ILAND, IUSE) and (IJREG, IJLAND, IJUSE) is purely historical baggage. This usage dates back to the original Harvard/GISS CTM, from which we obtained the GEOS-Chem dry deposition and soil NOx emissions modules. The dry deposition routine DEPVEL takes 1-D vectors of size IIPAR*JJPAR as its spatial dimension, instead of using 2 separate spatial dimensions. Nobody has undertaken to rewrite this code since.
  2. The ordering of the Olson land types in the vegtype.global file is not in ascending order. Instead, the Olson land types in a GEOS-Chem grid box are listed by the order in which they are first found (searching by 0.5° x 0.5° longitudes first, then latitudes). It is important to keep this ordering so that the leaf area index data that is read in from disk will correspond properly to the Olson land types.
  3. The FRCLND array is used in many locations within GEOS-Chem. It is computed by subtracting off the fraction of each GEOS-Chem grid box that is covered by land type 0 (water).

--Bob Y. 10:11, 22 March 2012 (EDT)

Modifications for the grid-independent model

References

  1. Bey I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. Field, A. M. Fiore, Q. Li, H. Liu, L. J. Mickley, and M. Schultz, Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23,073-23,096, 2001
  2. Olson, J, World Ecosystems (WE1.4): Digital raster data on a 10 minute geographic 1080 x 2160 grid, in Global Ecosystems Database, version 1.0, Disc A, edited by NOAA Natl. Geophys. Data Center, Boulder, Colorado, 1992.
  3. Wang, Y., D.J. Jacob, and J.A. Logan, Global simulation of tropospheric O3-NOx-hydrocarbon chemistry, 1. Model formulation, J. Geophys. Res., 103, D9, 10,713-10,726, 1998.

Known issues