Difference between revisions of "TransportTracers simulation"

From Geos-chem
Jump to: navigation, search
(List of species)
 
(5 intermediate revisions by the same user not shown)
Line 12: Line 12:
  
  
This page contains information about the Radon-Lead-Beryllium (and optional passive species) simulation in GEOS-Chem.
+
This page contains information about the TransportTracers (formerly Rn-Pb-Be) simulation in GEOS-Chem.
  
 
== Overview ==
 
== Overview ==
Line 18: Line 18:
 
The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model. The current simulation follows [http://acmg.seas.harvard.edu/publications/2001/liu2001.pdf Liu et al (2001)].   
 
The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model. The current simulation follows [http://acmg.seas.harvard.edu/publications/2001/liu2001.pdf Liu et al (2001)].   
  
In [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]] the Rn-Pb-Be simulation was extended to include additional passive species for benchmarking purposes and for diagnosing transport in GEOS-Chem. At this time the simulation was renamed to the **TransportTracer simulation**.  
+
In [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]] the Rn-Pb-Be simulation was extended to include additional passive species for benchmarking purposes and for diagnosing transport in GEOS-Chem. At this time the simulation was renamed to the '''''TransportTracer simulation'''''.  
  
 
In [[GEOS-Chem 14.2.0]] the TransportTracers simulation was further modified so that species names and definitions are now consistent with GMAO's tracer gridded component (aka TR_GridComp). This will facilitate comparison of transport within GEOS-Chem, GCHP, and GEOS.
 
In [[GEOS-Chem 14.2.0]] the TransportTracers simulation was further modified so that species names and definitions are now consistent with GMAO's tracer gridded component (aka TR_GridComp). This will facilitate comparison of transport within GEOS-Chem, GCHP, and GEOS.
 
  
 
=== List of species ===
 
=== List of species ===
Line 29: Line 28:
 
{| border=1 cellspacing=0 cellpadding=5
 
{| border=1 cellspacing=0 cellpadding=5
 
|-bgcolor="#CCCCCC"
 
|-bgcolor="#CCCCCC"
!width="200px"|Species name
+
!width="100px"|Species name
 
!width="200px"|Description
 
!width="200px"|Description
!width="400px"|Source
+
!width="300px"|Source
!width="400px"|Sink
+
!width="300px"|Sink
!width="200px"|Purpose
+
!width="300px"|Purpose
  
 
|-valign="top"
 
|-valign="top"
Line 64: Line 63:
 
|Pb210s
 
|Pb210s
 
|Lead-210 isotope stratospheric-source tracer
 
|Lead-210 isotope stratospheric-source tracer
|Same as Pb210 (restricted to the stratosphere)
+
|
|Same as Pb210
+
*Same as Pb210 (restricted to the stratosphere)
 +
|
 +
*Same as Pb210
 
|Used to evaluate strat-trop exchange
 
|Used to evaluate strat-trop exchange
  
Line 90: Line 91:
 
|Be7s
 
|Be7s
 
|Beryllium-7 isotope stratospheric source tracer
 
|Beryllium-7 isotope stratospheric source tracer
|Same as Be7 (restricted to the stratosphere)
+
|
|Same as Be7
+
*Same as Be7 (restricted to the stratosphere)
 +
|
 +
*Same as Be7
 
|Used to evaluate strat-trop exchange
 
|Used to evaluate strat-trop exchange
  
Line 110: Line 113:
 
|Be10s
 
|Be10s
 
|Beryllium-10 isotope stratospheric source tracer
 
|Beryllium-10 isotope stratospheric source tracer
|Same as Be10 (restricted to the stratosphere)
+
|
|Same as Be10
+
*Same as Be10 (restricted to the stratosphere)
 +
|
 +
*Same as Be10
 
|Used to evaluate strat-trop exchange
 
|Used to evaluate strat-trop exchange
  
Line 117: Line 122:
 
|PassiveTracer
 
|PassiveTracer
 
|Passive tracer with initial concentration of 100 ppb
 
|Passive tracer with initial concentration of 100 ppb
|None
+
|
|None
+
*None
 +
|
 +
*None
 
|Used to evaluate mass conservation in transport
 
|Used to evaluate mass conservation in transport
  
Line 124: Line 131:
 
|SF6
 
|SF6
 
|Sulfur hexafluoride
 
|Sulfur hexafluoride
|Anthropogenic emissions from EDGAR v4.2
+
|
|None
+
*Anthropogenic emissions from EDGAR v4.2
 +
|
 +
*None
 
|Used to evaluate inter-hemispheric transport of anthropogenic emissions
 
|Used to evaluate inter-hemispheric transport of anthropogenic emissions
  
Line 131: Line 140:
 
|CH3I
 
|CH3I
 
|Methyl iodide  
 
|Methyl iodide  
|Emissions over the oceans of 1 molec/cm2/s
+
|
|5-day e-folding lifetime
+
*Emissions over the oceans of 1 molec/cm2/s
 +
|
 +
*5-day e-folding lifetime
 
|Used to evaluate marine convection
 
|Used to evaluate marine convection
  
Line 138: Line 149:
 
|CO_25
 
|CO_25
 
|Anthropogenic CO 25-day tracer
 
|Anthropogenic CO 25-day tracer
|Emissions from CEDS v2
+
|
|25-day e-folding lifetime
+
*Emissions from CEDS v2
 +
|
 +
*25-day e-folding lifetime
 
|
 
|
  
Line 145: Line 158:
 
|CO_50
 
|CO_50
 
|Anthropogenic CO 50-day tracer
 
|Anthropogenic CO 50-day tracer
|Emissions from CEDS v2
+
|
|50-day e-folding lifetime
+
*Emissions from CEDS v2
 +
|
 +
*50-day e-folding lifetime
 
|
 
|
  
Line 152: Line 167:
 
|e90
 
|e90
 
|Constant burden 90-day tracer
 
|Constant burden 90-day tracer
|Emitted globally at the surface such that the mixing ratio is maintained at 100 ppbv  
+
|
|90-day e-folding lifetime
+
*Emitted globally at the surface such that the mixing ratio is maintained at 100 ppbv  
 +
|
 +
*90-day e-folding lifetime
 
|
 
|
  
Line 159: Line 176:
 
|e90_n
 
|e90_n
 
|Constant burden Northern Hemisphere 90-day tracer
 
|Constant burden Northern Hemisphere 90-day tracer
|Emitted at the surface such that the mixing ratio is maintained at 100 ppbv. Emissions source is restricted to 40N - 90N.
+
|
|90-day e-folding lifetime
+
*Emitted at the surface such that the mixing ratio is maintained at 100 ppbv. Emissions source is restricted to 40N - 90N.
 +
|
 +
*90-day e-folding lifetime
 
|
 
|
  
Line 166: Line 185:
 
|e90_s
 
|e90_s
 
|Constant burden Southern Hemisphere 90-day tracer
 
|Constant burden Southern Hemisphere 90-day tracer
|Emitted at the surface such that the mixing ratio is maintained at 100 ppbv. Emissions source is restricted to 90S - 40S.
+
|
|90-day e-folding lifetime
+
*Emitted at the surface such that the mixing ratio is maintained at 100 ppbv. Emissions source is restricted to 90S - 40S.
 +
|
 +
*90-day e-folding lifetime
 
|
 
|
  
Line 173: Line 194:
 
|aoa
 
|aoa
 
|Age of air uniform source tracer
 
|Age of air uniform source tracer
|Increases by a value of 1 each emissions timestep
+
|
|Sink at the surface
+
*Increases by a value of 1 each emissions timestep
 +
|
 +
*Sink at the surface
 
|Used for evaluating residual circulation and mixing
 
|Used for evaluating residual circulation and mixing
  
Line 180: Line 203:
 
|aoa_bl
 
|aoa_bl
 
|Age of air uniform source tracer with sink restricted to the boundary layer
 
|Age of air uniform source tracer with sink restricted to the boundary layer
|Increases by a value of 1 each emissions timestep
+
|
|Sink in the boundary layer
+
*Increases by a value of 1 each emissions timestep
 +
|
 +
*Sink in the boundary layer
 
|Used for evaluating residual circulation and mixing
 
|Used for evaluating residual circulation and mixing
  
Line 187: Line 212:
 
|aoa_nh
 
|aoa_nh
 
|Age of air uniform source tracer with sink restricted to a zone in the Northern Hemisphere
 
|Age of air uniform source tracer with sink restricted to a zone in the Northern Hemisphere
|Increases by a value of 1 each emissions timestep
+
|
|Sink at 30N - 50N
+
*Increases by a value of 1 each emissions timestep
 +
|
 +
*Sink at 30N - 50N
 
|Used for evaluating residual circulation and mixing
 
|Used for evaluating residual circulation and mixing
  
Line 194: Line 221:
 
|nh_5
 
|nh_5
 
|Northern Hemisphere 5-day tracer
 
|Northern Hemisphere 5-day tracer
|Constant source of 100 ppbv at latitudes 30N - 50N
+
|
|5-day e-folding lifetime
+
*Constant source of 100 ppbv at latitudes 30N - 50N
 +
|
 +
*5-day e-folding lifetime
 
|
 
|
  
Line 201: Line 230:
 
|nh_50
 
|nh_50
 
|Northern Hemisphere 50-day tracer
 
|Northern Hemisphere 50-day tracer
|Constant source of 100 ppbv at latitudes 30N - 50N
+
|
|50-day e-folding lifetime
+
*Constant source of 100 ppbv at latitudes 30N - 50N
 +
|
 +
*50-day e-folding lifetime
 
|
 
|
  
Line 208: Line 239:
 
|st80_25
 
|st80_25
 
|Stratospheric source 25-day tracer
 
|Stratospheric source 25-day tracer
|Constant source of 200 ppbv above 80 hPa
+
|
|25-day e-folding lifetime
+
*Constant source of 200 ppbv above 80 hPa
 +
|
 +
*25-day e-folding lifetime
 
|
 
|
  
 
|}
 
|}
 
== Non-local PBL mixing ==
 
 
Capability to use the [[Boundary_layer_mixing#VDIFF|non-local PBL mixing scheme]] was added in [[GEOS-Chem v9-02]]. Code updates were provided by [mailto:jlin5@pku.edu.cn Jintai Lin].
 
 
Karen Yu evaluated the non-local PBL mixing scheme in the Rn-Pb-Be simulation using [[GEOS-5]] and [[GEOS-FP]] met fields. Please see [http://wiki.seas.harvard.edu/geos-chem/images/RnPbBe_nonlocalPBL.pdf these plots] comparing the simulation with and without the non-local PBL mixing scheme.
 
 
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 16:43, 8 January 2016 (UTC)
 
 
== 1-year benchmark simulations ==
 
 
=== Benchmark overview ===
 
 
1-year Rn-Pb-Be benchmark simulations are completed at the request of the Transport Working Group or whenever an update is introduced into the code that will impact transport and/or wet deposition. Each of these benchmarks involve a 4-year spinup period, followed by the 1-year run used for evaluation.
 
 
=== Benchmark plots ===
 
 
{| border=1 cellspacing=0 cellpadding=5
 
|- bgcolor="#CCCCCC"
 
!width="100px"|Version
 
!width="900px"|Link
 
 
|-valign="top"
 
|'''[[GEOS-Chem_12#12.8.0|12.8.0]]<br>w/ GEOS-FP'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.8.0/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]<br>w/ GEOS-FP'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.2.0/TransportTracers/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]<br>w/ GEOS-FP''' (2016 met)
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run2/NLPBL/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]<br>w/ GEOS-FP''' (72 levels)
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run1/NLPBL/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]<br>w/ GEOS-FP''' (2013 met)
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run0/NLPBL/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]<br>w/ GEOS-FP'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02b/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]<br>w/ GEOS-FP'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01i/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]<br>w/ GEOS-FP'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01h/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]<br>w/ MERRA-2'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/MERRA2/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]<br>w/ GEOS-FP'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/GEOSFP/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]<br>w/ GEOS-FP'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01d/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]<br>w/ GEOS-FP'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01b/RnPbBe/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]<br>w/ GEOS-FP'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v10-01/v10-01-public-release/RnPbBe/output/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]<br>w/ GEOS-FP'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geosfp/RnPbBe/output/pdf/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]<br>w/ GEOS-5'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geos5/RnPbBe/output/pdf/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]<br>w/ GEOS-5'''
 
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-01-03/v9-01-03e/geos5/2005/RnPbBe/output/pdf/</tt>
 
 
|-valign="top"
 
|'''[[GEOS-Chem v9-01-02|v9-01-02]]<br>w/ GEOS-5'''
 
|<tt>http://wiki.seas.harvard.edu/geos-chem/index.php/Rn-Pb-Be_simulation#Comparison_plots</tt>
 
 
|}
 
 
=== Budget of Pb210 ===
 
 
In this table we plot the budgets of Pb<sup>210</sup> obtained from 1-year benchmark simulations at 4&deg; x 5&deg; resolution done with various GEOS-Chem versions. 
 
 
{| border=1 cellspacing=0 cellpadding=5
 
|- bgcolor="#CCCCCC"
 
!width="75px" rowspan="3"|Version
 
!width="75px" rowspan="3"|Met Field
 
!width="75px" rowspan="3"|Year
 
!width="100px" rowspan="3"|Tropospheric burden [g]
 
!width="100px" rowspan="3"|Tropospheric lifetime against deposition [days]
 
!width="150px" colspan="2"|Sources [g day -1]
 
!width="375px" colspan="5"|Sinks [g day-1]
 
 
|-bgcolor="#CCCCCC"
 
!width="75px" rowspan="2"|From Stratosphere
 
!width="75px" rowspan="2"|From Troposphere
 
!width="75px" rowspan="2"|Dry Deposition
 
!width="225px" colspan="3"|Wet Deposition
 
!width="75px" rowspan="2"|Radioactive decay
 
 
|-bgcolor="#CCCCCC"
 
!width="100px"|Total
 
!width="100px"|Stratiform
 
!width="100px"|Convective
 
 
|-valign="top"
 
|[[GEOS-Chem 12#12.8.0|12.8.0]]<br>(with [https://github.com/geoschem/geos-chem/pull/95 Luo2019] wetdep)
 
|[[GEOS-FP]] (72L)
 
|2016
 
|105.1827
 
|3.2461
 
|0.2690
 
|32.1142
 
|2.3068
 
|30.0303
 
|25.4236
 
|4.6067
 
|0.0088608
 
 
|-valign="top"
 
|[[GEOS-Chem 12#12.8.0|12.8.0]]
 
|[[GEOS-FP]] (72L)
 
|2016
 
|211.6465
 
|6.5363
 
|0.2690
 
|32.1142
 
|3.9521
 
|28.4142
 
|19.9437
 
|8.4705
 
|0.0178018
 
 
|-valign="top"
 
|[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]
 
|[[GEOS-FP]] (72L)
 
|2016
 
|218.330
 
|6.71344
 
|0.236801
 
|32.2602
 
|3.95678
 
|28.5218
 
|20.0439
 
|8.47787
 
|0.0183735
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]
 
|[[GEOS-FP]] (72L)
 
|'''2016'''
 
|217.941
 
|6.71192
 
|0.224000
 
|32.2206
 
|3.94971
 
|28.4770
 
|20.0147
 
|8.46232
 
|0.0183407
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]
 
|[[GEOS-FP]] '''(72L)'''
 
|2013
 
|229.338
 
|7.10583
 
|0.219856
 
|32.0661
 
|3.90212
 
|28.3646
 
|19.9166
 
|8.44793
 
|0.0192987
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]
 
|[[GEOS-FP]]
 
|2013
 
|229.338
 
|7.10583
 
|0.219864
 
|32.0661
 
|3.90212
 
|28.3646
 
|19.9166
 
|8.44793
 
|0.0192987
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]
 
|[[GEOS-FP]]
 
|2013
 
|229.061
 
|7.09725
 
|0.219669
 
|32.0661
 
|3.93661
 
|28.3299
 
|19.8931
 
|8.43679
 
|0.0192754
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]
 
|[[GEOS-FP]]
 
|2013
 
|229.335
 
|7.10581
 
|0.219894
 
|32.0656
 
|3.90206
 
|28.3642
 
|19.9163
 
|8.44786
 
|0.0192984
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]
 
|[[GEOS-FP]]
 
|2013
 
|205.551
 
|6.37603
 
|0.200768
 
|32.0656
 
|3.32588
 
|28.9232
 
|22.2968
 
|6.62642
 
|0.0173020
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 
|'''[[MERRA-2]]'''
 
|2013
 
|199.426
 
|6.20202
 
|0.237400
 
|31.9437
 
|3.26365
 
|28.9007
 
|21.7525
 
|7.14814
 
|0.0167875
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 
|[[GEOS-FP]]
 
|2013
 
|204.931
 
|6.37746
 
|0.225323
 
|31.9356
 
|3.32210
 
|28.8216
 
|22.2060
 
|6.61553
 
|0.0172499
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]
 
|[[GEOS-FP]]
 
|2013
 
|210.371
 
|6.54296
 
|0.225956
 
|31.9538
 
|3.41587
 
|28.7451
 
|21.9070
 
|6.83813
 
|0.0177696
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]
 
|[[GEOS-FP]]
 
|2013
 
|212.655
 
|6.60214
 
|0.228550
 
|31.9528
 
|3.49478
 
|28.6686
 
|22.0420
 
|6.62657
 
|0.0179612
 
 
|-valign="top"
 
|[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]
 
|[[GEOS-FP]]
 
|'''2013'''
 
|250.912
 
|7.77516
 
|0.0832825
 
|32.2152
 
|3.51910
 
|28.7582
 
|22.0207
 
|6.73749
 
|0.0211769
 
 
|-valign="top"
 
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 
|'''[[GEOS-FP]]'''
 
|2012/2013
 
|247.630
 
|7.71356
 
|0.143133
 
|31.9904
 
|3.15887
 
|28.9538
 
|22.5351
 
|6.41867
 
|0.0208565
 
 
|-valign="top"
 
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 
|[[GEOS-5]]
 
|'''2012/2013'''
 
|305.699
 
|9.25835
 
|0.419521
 
|32.6109
 
|3.42747
 
|29.5772
 
|20.2059
 
|9.37127
 
|0.0257354
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]
 
|[[GEOS-5]]
 
|2005
 
|314.790
 
|9.51050
 
|0.128670
 
|32.9831
 
|3.48612
 
|29.5991
 
|20.8285
 
|8.77061
 
|0.0265495
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-02|v9-01-02]]
 
|[[GEOS-5]]
 
|2005
 
|317.884
 
|9.60957
 
|0.121441
 
|32.9831
 
|3.49208
 
|29.5857
 
|19.5148
 
|10.0709
 
|0.0268078
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-01|v9-01-01]]
 
|[[GEOS-5]]
 
|2005
 
|316.253
 
|9.55568
 
|0.129852
 
|32.9831
 
|3.66397
 
|29.4223
 
|19.4090
 
|10.0134
 
|0.0251665
 
 
|-valign="top"
 
|[[GEOS-Chem v8-03-02|v8-03-02]]
 
|[[GEOS-5]]
 
|2005
 
|298.318
 
|9.01288
 
|0.129642
 
|32.9831
 
|3.21013
 
|29.8775
 
|21.3283
 
|8.54923
 
|0.0266710
 
 
|}
 
 
NOTES:
 
*'''Bolded''' text denotes change in meteorology product and/or meteorology year.
 
*The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by [mailto:hongyu.liu-1@nasa.gov Hongyu Liu])
 
*The benchmark simulations for [[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]] were done for June 2012&ndash;May 2013, with a 2-month spinup. This was due to data availability of the [[GEOS-FP]] met fields at the time of the simulation. (Completed by [mailto:kyu@seas.harvard.edu Karen Yu])
 
*The simulations for [[GEOS-Chem v10-01]] and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
 
*The simulations for [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]] and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
 
*'''''<span style="color:darkorange">Hongyu Liu and Bo Zhang are investigating the low Pb tropospheric lifetime against deposition observed in v11-01b using GEOS-FP. A quick fix was tested in v11-01d, but subsequently removed because of the high impact on aerosols. For more information, see [[Wet_deposition#Low_tropospheric_210Pb_lifetime_against_deposition_in_v11-01b|this discussion on the ''Wet deposition'' wiki page]].</span>
 
 
=== Budget of Be7 ===
 
 
In this table we plot the budgets of Be<sup>7</sup> obtained from 1-year benchmark simulations at 4&deg; x 5&deg; resolution done with various GEOS-Chem versions.
 
 
{| border=1 cellspacing=0 cellpadding=5
 
|- bgcolor="#CCCCCC"
 
!width="150px" rowspan="3"|Version
 
!width="75px" rowspan="3"|Met Field
 
!width="75px" rowspan="3"|Year
 
!width="100px" rowspan="3"|Tropospheric burden [g]
 
!width="100px" rowspan="3"|Tropospheric lifetime against deposition [days]
 
!width="150px" colspan="2"|Sources [g day -1]
 
!width="375px" colspan="5"|Sinks [g day-1]
 
 
|-bgcolor="#CCCCCC"
 
!width="75px" rowspan="2"|From Stratosphere
 
!width="75px" rowspan="2"|From Troposphere
 
!width="75px" rowspan="2"|Dry Deposition
 
!width="225px" colspan="3"|Wet Deposition
 
!width="75px" rowspan="2"|Radioactive decay
 
 
|-bgcolor="#CCCCCC"
 
!width="75px"|Total
 
!width="75px"|Stratiform
 
!width="75px"|Convective
 
 
|-valign="top"
 
|[[GEOS-Chem 12#12.8.0|12.8.0]]<br>(with [https://github.com/geoschem/geos-chem/pull/95 Luo2019] wetdep)
 
|[[GEOS-FP]] (72L)
 
|2016
 
|1.1882
 
|9.5228
 
|0.2882
 
|0.1149
 
|0.0052
 
|0.1188
 
|0.1029
 
|0.0159
 
|0.0154770
 
 
|-valign="top"
 
|[[GEOS-Chem 12#12.8.0|12.8.0]]
 
|[[GEOS-FP]] (72L)
 
|2016
 
|2.8927
 
|20.5842
 
|0.2882
 
|0.1149
 
|0.0095
 
|0.1305
 
|0.1047
 
|0.0258
 
|0.0376572
 
 
|-valign="top"
 
|[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]
 
|[[GEOS-FP]] (72L)
 
|2016
 
|3.55540
 
|24.5959
 
|0.0541444
 
|0.136303
 
|0.00952537
 
|0.134645
 
|0.108871
 
|0.0257736
 
|0.0462768
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]
 
|[[GEOS-FP]] (72L)
 
|'''2016'''
 
|3.56036
 
|24.6000
 
|0.0543652
 
|0.136303
 
|0.00955045
 
|0.134776
 
|0.108970
 
|0.0258063
 
|0.0463413
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]
 
|[[GEOS-FP]] '''(72L)'''
 
|2013
 
|3.50286
 
|24.9516
 
|0.0529614
 
|0.132687
 
|0.0102709
 
|0.129784
 
|0.103733
 
|0.0260514
 
|0.0455928
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]
 
|[[GEOS-FP]]
 
|2013
 
|3.51047
 
|24.9816
 
|0.0531919
 
|0.132687
 
|0.0102796
 
|0.129907
 
|0.103831
 
|0.0260759
 
|0.0456918
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]
 
|[[GEOS-FP]]
 
|2013
 
|3.51002
 
|24.9773
 
|0.0531920
 
|0.132688
 
|0.0103364
 
|0.129856
 
|0.103796
 
|0.0260605
 
|0.0456861
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]
 
|[[GEOS-FP]]
 
|2013
 
|3.51044
 
|24.9815
 
|0.0531920
 
|0.132685
 
|0.0102795
 
|0.129907
 
|0.103831
 
|0.0260760
 
|0.0456914
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]
 
|[[GEOS-FP]]
 
|2013
 
|3.27337
 
|22.7988
 
|0.0531059
 
|0.132685
 
|0.00626941
 
|0.136914
 
|0.124153
 
|0.0127610
 
|0.0426082
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 
|'''[[MERRA-2]]'''
 
|2013
 
|3.12435
 
|21.2728
 
|0.0538848
 
|0.133202
 
|0.00650753
 
|0.139910
 
|0.124784
 
|0.0151255
 
|0.0406699
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 
|[[GEOS-FP]]
 
|2013
 
|3.27720
 
|22.8066
 
|0.0531204
 
|0.132842
 
|0.00628201
 
|0.137021
 
|0.124239
 
|0.0127822
 
|0.0426591
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]
 
|[[GEOS-FP]]
 
|2013
 
|3.32564
 
|23.2523
 
|0.0530363
 
|0.132914
 
|0.00664940
 
|0.135989
 
|0.122347
 
|0.0136424
 
|0.0433123
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]
 
|[[GEOS-FP]]
 
|2013
 
|3.33530
 
|23.3408
 
|0.0530463
 
|0.132914
 
|0.00698390
 
|0.135539
 
|0.1228950
 
|0.0126441
 
|0.0434378
 
 
|-valign="top"
 
|[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]
 
|[[GEOS-FP]]
 
|'''2013'''
 
|3.98942
 
|30.1194
 
|0.0512072
 
|0.132977
 
|0.00794288
 
|0.124298
 
|0.1101450
 
|0.0141529
 
|0.0519433
 
 
|-valign="top"
 
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 
|'''[[GEOS-FP]]'''
 
|2012/2013
 
|3.41039
 
|25.9787
 
|0.0630964
 
|0.112349
 
|0.00782526
 
|0.123206
 
|0.1093560
 
|0.0138500
 
|0.0444134
 
 
|-valign="top"
 
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 
|[[GEOS-5]]
 
|'''2012/2013'''
 
|3.49564
 
|27.5376
 
|0.0674867
 
|0.104750
 
|0.00881422
 
|0.117906
 
|0.0844566
 
|0.0334494
 
|0.0455165
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]
 
|[[GEOS-5]]
 
|2005
 
|4.37787
 
|34.6750
 
|0.0504472
 
|0.132552
 
|0.00882144
 
|0.117156
 
|0.0858211
 
|0.0393817
 
|0.0570217
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-02|v9-01-02]]
 
|[[GEOS-5]]
 
|2005
 
|4.39653
 
|34.8814
 
|0.0504253
 
|0.132552
 
|0.00936374
 
|0.116350
 
|0.0769681
 
|0.0393817
 
|0.0572633
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-01|v9-01-01]]
 
|[[GEOS-5]]
 
|2005
 
|4.39407
 
|34.8514
 
|0.0504328
 
|0.132552
 
|0.00969345
 
|0.116060
 
|0.0767926
 
|0.0392671
 
|0.0572312
 
 
|-valign="top"
 
|[[GEOS-Chem v8-03-02|v8-03-02]]
 
|[[GEOS-5]]
 
|2005
 
|4.31961
 
|33.9930
 
|0.0504585
 
|0.132552
 
|0.00808056
 
|0.118666
 
|0.0846774
 
|0.0339885
 
|0.0562636
 
 
|}
 
 
NOTES:
 
*'''Bolded''' text denotes change in meteorology product and/or meteorology year.
 
*The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by [mailto:hongyu.liu-1@nasa.gov Hongyu Liu])
 
*The benchmark simulations for [[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]] were done for June 2012&ndash;May 2013, with a 2-month spinup. This was due to data availability of the [[GEOS-FP]] met fields at the time of the simulation. (Completed by [mailto:kyu@seas.harvard.edu Karen Yu])
 
*The simulations for [[GEOS-Chem v10-01]] and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GEOS-Chem Support Team]])
 
*The simulations for [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]] and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
 
  
 
== References ==
 
== References ==

Latest revision as of 17:18, 24 October 2023

Previous | Next | Guide to GEOS-Chem simulations

  1. Simulations using KPP-built mechanisms
  2. Aerosol-only simulation
  3. CH4 simulation
  4. CO2 simulation
  5. Hg simulation
  6. POPs simulation
  7. Tagged CO simulation
  8. Tagged O3 simulation
  9. TransportTracers simulation


This page contains information about the TransportTracers (formerly Rn-Pb-Be) simulation in GEOS-Chem.

Overview

The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model. The current simulation follows Liu et al (2001).

In GEOS-Chem 12.2.0 the Rn-Pb-Be simulation was extended to include additional passive species for benchmarking purposes and for diagnosing transport in GEOS-Chem. At this time the simulation was renamed to the TransportTracer simulation.

In GEOS-Chem 14.2.0 the TransportTracers simulation was further modified so that species names and definitions are now consistent with GMAO's tracer gridded component (aka TR_GridComp). This will facilitate comparison of transport within GEOS-Chem, GCHP, and GEOS.

List of species

The transport tracers are summarized below.

Species name Description Source Sink Purpose
Rn222 Radon-222 isotope
  • Half-life of 3.83 days (Liu at al., 2001).
    • Decays into Pb210 according to the exponential law:
EXP( -ΔT * 2.097d-6 )
Used to evaluate convection over land and strat-trop exchange
Pb210 Lead-210 isotope
  • Radioactive decay from Rn222 according to the exponential law:
EXP( -ΔT * 2.097d-6 )
Where ΔT is the emission timestep in seconds.
  • Half-life of 22.3 years (Liu et al., 2001).
    • Decays according to the exponential law:
EXP( -ΔT * 9.725d-10 )
  • Wet deposition
  • Dry deposition
Used to evaluate wet scavenging and transport
Pb210s Lead-210 isotope stratospheric-source tracer
  • Same as Pb210 (restricted to the stratosphere)
  • Same as Pb210
Used to evaluate strat-trop exchange
Be7 Beryllium-7 isotope
  • Produced by cosmic rays as described in Lal and B. Peters, 1967
  • Plus the following modifications from Liu et al. (2001):
  1. Replace data at (0 hPa altitude, 70°S latitude) following Koch (1996):
    • old value = 3000 disintegrations/g air/s
    • new value = 1900 disintegrations/g air/s
  2. The original Lal & Peters data ended at 70°S
    • Copy the data values at 70°S to 80°S and 90°S at all levels
  • Half-life of 53.3 days (Liu et al., 2001).
    • Decays according to the exponential law:
EXP( -ΔT * 1.506d-7 )
  • Wet deposition
  • Dry deposition
Used to evaluate wet scavenging and strat-trop exchange
Be7s Beryllium-7 isotope stratospheric source tracer
  • Same as Be7 (restricted to the stratosphere)
  • Same as Be7
Used to evaluate strat-trop exchange
Be10 Beryllium-10 isotope
  • Be10 has an identical source distribution as Be7 following Koch and Rind (1998).
  • Half-life of 5.84e8 days (Koch and Rind, 1998).
    • Decays according to the exponential law:
EXP( -ΔT * 1.506d-7 )
  • Wet deposition
  • Dry deposition
Used to evaluate wet scavenging and strat-trop exchange
Be10s Beryllium-10 isotope stratospheric source tracer
  • Same as Be10 (restricted to the stratosphere)
  • Same as Be10
Used to evaluate strat-trop exchange
PassiveTracer Passive tracer with initial concentration of 100 ppb
  • None
  • None
Used to evaluate mass conservation in transport
SF6 Sulfur hexafluoride
  • Anthropogenic emissions from EDGAR v4.2
  • None
Used to evaluate inter-hemispheric transport of anthropogenic emissions
CH3I Methyl iodide
  • Emissions over the oceans of 1 molec/cm2/s
  • 5-day e-folding lifetime
Used to evaluate marine convection
CO_25 Anthropogenic CO 25-day tracer
  • Emissions from CEDS v2
  • 25-day e-folding lifetime
CO_50 Anthropogenic CO 50-day tracer
  • Emissions from CEDS v2
  • 50-day e-folding lifetime
e90 Constant burden 90-day tracer
  • Emitted globally at the surface such that the mixing ratio is maintained at 100 ppbv
  • 90-day e-folding lifetime
e90_n Constant burden Northern Hemisphere 90-day tracer
  • Emitted at the surface such that the mixing ratio is maintained at 100 ppbv. Emissions source is restricted to 40N - 90N.
  • 90-day e-folding lifetime
e90_s Constant burden Southern Hemisphere 90-day tracer
  • Emitted at the surface such that the mixing ratio is maintained at 100 ppbv. Emissions source is restricted to 90S - 40S.
  • 90-day e-folding lifetime
aoa Age of air uniform source tracer
  • Increases by a value of 1 each emissions timestep
  • Sink at the surface
Used for evaluating residual circulation and mixing
aoa_bl Age of air uniform source tracer with sink restricted to the boundary layer
  • Increases by a value of 1 each emissions timestep
  • Sink in the boundary layer
Used for evaluating residual circulation and mixing
aoa_nh Age of air uniform source tracer with sink restricted to a zone in the Northern Hemisphere
  • Increases by a value of 1 each emissions timestep
  • Sink at 30N - 50N
Used for evaluating residual circulation and mixing
nh_5 Northern Hemisphere 5-day tracer
  • Constant source of 100 ppbv at latitudes 30N - 50N
  • 5-day e-folding lifetime
nh_50 Northern Hemisphere 50-day tracer
  • Constant source of 100 ppbv at latitudes 30N - 50N
  • 50-day e-folding lifetime
st80_25 Stratospheric source 25-day tracer
  • Constant source of 200 ppbv above 80 hPa
  • 25-day e-folding lifetime

References

  1. Liu, H., D. Jacob, I. Bey, and R.M. Yantosca, Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res, 106, D11, 12109-12128, 2001.
  2. Jacob et al., Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers, J. Geophys. Res, 102, 5953-5970, 1997.
  3. Koch, D.M., D.J. Jacob, and W.C. Graustein, Vertical transport of tropospheric aerosols as indicated by 7Be and 210Pb in a chemical tracer model, J. Geophys. Res, 101, D13, 18651-18666, 1996.
  4. Koch, D., and D. Rind, Beryllium 10/beryllium 7 as a tracer of stratospheric transport, J. Geophys. Res., 103, D4, 3907-3917, 1998.
  5. Lal, D., and B. Peters, Cosmic ray produced radioactivity on the Earth. Handbuch der Physik, 46/2, 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.



Previous | Next | Guide to GEOS-Chem simulations