Ship emissions

From Geos-chem
Jump to: navigation, search

This page describes the various ship emissions inventories that have been implemented in GEOS-Chem.

Overview

At present there are several different ship emissions options in GEOS-Chem. All of these are available for use via the Harmonized Emissions Component (HEMCO).

Inventory Species included Year(s) HEMCO Hierarchy Notes
Currently-used ship emission inventories
CEDS NO, CO, SOAP, SO2, SO4, pFe, NH3, BC, OC, CO2, CH4, EOH, C2H6, C3H8, ALK4, C2H4, PRPE, C2H2, BENZ, TOLU, XYLE, CH2O, ALD2, MEK, HCOOH 1950-2014 5
  • CEDS is the default global ship emission inventory in GC 12.1.0 and later versions.
  • Now supersedes ARCTAS, ICOADS, and/or Corbett.
HTAP CO, SOAP, SO2 2008-2010 4
  • Inventory commented out in HEMCO config file.
  • HTAP is a research option but not a standard option.
Deprecated ship emission inventories
ARCTAS SO2 2008 1
  • Superseded by CEDS in GC 12.1.0 and later versions.
  • Can still be used as a research option.
ICOADS CO, SOAP, SO2 2002 2
  • SO2 commented out
  • Superseded by CEDS in GC 12.1.0 and later versions.
  • Can still be used as a research option.
Corbett SO2 1985 3
  • Inventory commented out in HEMCO config file
  • Superseded by CEDS in GC 12.1.0 and later versions.
  • Can still be used as a research option.
EDGAR NO, CO, SO2 1970-2010 N/A
  • Chi Li wrote: Aviation and shipping emissions are not included [in EDGAR v4.3], since it is hard to spatially assign the total emissions of international aviation and shipping in the time series data.
EMEP CO, SOAP, SO2 1990-2012 10
EPA/NEI2011 HNO2, CO, SOAP, NH3, CH2O, RCHO, MACR, ACET, C3H8, MEK, ALK4, PRPE, EOH, MOH, XYLE, TOLU, BENZ, SO2, SO4, pFe, C2H4, C2H6, ALD2, BC, OC 2006-2013 50
  • NEI2011_SHIP_HOURLY and NEI2011_SHIP_MONTHLY are set to false by default
  • Katie Travis wrote, "The ship inventory for NEI11 only goes a few km from land, so it isn’t a complete ‘ship inventory’. Maybe we just shouldn’t use it as a default."

--Melissa Sulprizio (talk) 16:21, 18 June 2019 (UTC)
--Bob Yantosca (talk) 21:52, 16 September 2022 (UTC)

ARCTAS

ARCTAS is now superseded by CEDS in GEOS-Chem 12.1.0 and later versions.

The ARCTAS pre-mission inventory of SO2 was first introduced in GEOS-Chem v8-01-04.

Philippe Le Sager wrote:

The ship emission is based on the work by Eyring et al., [2005a and 2005b], which estimates the total international ship emissions for 1985, 1990, 2001, and 2020 (projection). The ship emission for each individual year is interpreted based on the above years, and the spatial pattern (gridded) is mapped based on the EDGAR gridded ship emission for 2000 (total amount from EDGAR is scaled to Eyring-based number).
If you want to reference the work on publication or website, you may either mention Diehl et al. [manuscript in preparation, 2009] or refer to the AeroCom readme document (prepared by Diehl).

In GEOS-Chem v10-01 and newer versions, the ARCTAS ship emissions data files are read with the HEMCO emissions component. We have created ARCTAS ship data files (in COARDS-compliant netCDF format) for use with HEMCO. These new data files are contained in the HEMCO data directory tree. For detailed instructions on how to download these data files to your disk server, please see our Downloading the HEMCO data directories wiki post.

--Bob Yantosca (talk) 22:01, 16 September 2022 (UTC)

Corbett

Corbett is now superseded by CEDS in GEOS-Chem 12.1.0 and later versions.

For more information about this inventory please see: Corbett, J. J., P. S. Fischbeck, and S. N. Pandis, Global nitrogen and sulfur inventories for oceangoing ships, J. Geophys. Res., 104(D3), 3457–3470, 1999.

--Bob Yantosca (talk) 22:02, 16 September 2022 (UTC)

ICOADS

ICOADS is now superseded by CEDS in GEOS-Chem 12.1.0 and later versions.

The ICOADS ship inventory was first introduced in GEOS-Chem v8-02-03. It contains the species NOx, CO, and SO2. Chulkyu Lee worked on implementing ICOADS into GEOS-Chem.

From Wang et al [2008]:

Ship activity patterns depicted by the International Comprehensive Ocean−Atmosphere Data Set (ICOADS), the Automated Mutual-Assistance Vessel Rescue System (AMVER) data set, and their combination demonstrate different spatial and statistical sampling biases. These differences could significantly affect the accuracy of ship emissions inventories and atmospheric modeling. We demonstrate (using ICOADS) a method to improve global-proxy representativeness by trimming over-reporting vessels that mitigates sampling bias, augment the sample data set, and account for ship heterogeneity. Apparent under-reporting to ICOADS and AMVER by ships near coastlines, perhaps engaged in coastwise (short sea) shipping especially in Europe, indicates that bottom-up regional inventories may be more representative locally. Primarily due to the long time series available publicly for ICOADS data, the improved ICOADS data set may be the most appropriate global ship traffic proxy identified to date to be used for a top-down approach. More generally, these three spatial proxies can be used together to perform uncertainty analyses of ship air-emissions impacts on a global scale (http://coast.cms.udel.edu/GlobalShipEmissions/).

--Bob Yantosca (talk) 22:02, 16 September 2022 (UTC)

PARANOX ship plume model

An updated version of PARANOX was brought into GEOS-Chem v10-01 via the HEMCO emissions component.

PARANOX updates by Chris Holmes and Geert Vinken (July 2014)

This post describes the original updates to PARANOX made by Chris Holmes and Geert Vinken in July 2014. These updates have since been brought into GEOS-Chem as an extension to the HEMCO emissions component.

Chris Holmes wrote:

Geert and I have updated the ship plume emissions in GEOS-Chem. A paper based on the updated model is now accepted in ACP (see this link).
The updated features are as follows:
  1. Ship plume chemical aging now depends on wind speed, which directly affects the plume dispersion rates and indirectly affects the plume chemistry.
  2. The underlying Gaussian plume model now includes dry deposition.
  3. NO, NO2, and O3 are all emitted separately, consistent with removing the NOx and Ox families in GC v9-02.
  4. The look-up tables are now in netCDF format.
  5. CH4 oxidation in ship plumes is now diagnosed and written in the paranox_ts files. This is only a diagnostic and does not affect the model chemistry.
As with previous versions, PARANOX uses a look-up table derived from a Gaussian plume model to provide effective emission factors for NOx, O3, and HNO3 from ships. Both the Gaussian plume model and GEOS-Chem with the embedded look-up tables have been evaluated against observations (Holmes et al. 2014; Vinken et al., 2011). The emission factors are based on 8 environmental variables from the CTM: ambient concentrations of NOx and O3, solar zenith angle at emission time and 5 hours later, photolysis rates of NO2 and O3, temperature, and wind speed.

--Melissa Sulprizio 10:21, 18 June 2014 (EDT)

Re-implementation as a HEMCO extension

Christoph Keller and the GEOS-Chem Support Team have re-implemented the updated implementation of PARANOX described above as a HEMCO extension. A new HEMCO extension module (HEMCO/Extensions/hcox_paranox_mod.F90) has now replaced the original paranox_mod.F module.

New PARANOX lookup table files have been created in both COARDS-compliant netCDF format as well as in text format for use with HEMCO. These new data files are contained in the HEMCO data directory tree. For detailed instructions on how to download these data files to your disk server, please see our Downloading the HEMCO data directories wiki post.

--Bob Y. 13:23, 3 March 2015 (EST)

References

  1. AEROCOM readme document
  2. EMEP web page
  3. ICOADS web page
  4. Auvray, M., and I. Bey, Long-Range Transport to Europe: Seasonal Variations and Implications for the European Ozone Budget, J. Geophys. Res., 110, D11303, doi: 10.1029/2004JD005503, 2005.
  5. Chen, G., et al. An investigation of the chemistry of ship emission plumes during ITCT 2002, J. Geophys. Res., 110, D10S90, doi:10.1029/2004JD005236, 2005.
  6. Corbett, J. J., P. S. Fischbeck, and S. N. Pandis, Global nitrogen and sulfur inventories for oceangoing ships, J. Geophys. Res., 104(D3), 3457–3470, 1999.
  7. Eyring, V., H. W. Kšhler, J. van Aardenne, and A. Lauer, Emissions from international shipping: 1. The last 50 years, J. Geophys. Res., 110, D17305, doi:10.1029/2004JD005619, 2005a.
  8. Eyring, V., H. W. Kšhler, A. Lauer, and B. Lemper, Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050, J. Geophys. Res., 110, D17306, doi:10.1029/2004JD005620, 2005b.
  9. Holmes, C. D., Prather, M. J., and Vinken, G. C. M., The climate impact of ship NOx emissions: an improved estimate accounting for plume chemistry, Atmos. Chem. Phys., 14, 6801-6812, doi:10.5194/acp-14-6801-2014, 2014. Link
  10. Olivier, J.G.J. and J.J.M. Berdowski, Global emissions sources and sinks. In: Berdowski, J., Guicherit, R. and B.J. Heij (eds.) The Climate System, pp. 33-78. A. A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse, The Netherlands., 2001
  11. Vestreng, V., and H. Klein (2002), Emission data reported to UNECE/EMEP: Quality insurance and trend analysis and presentation of Web-Dab, MSC-W Status Rep. 2002:, 101 pp., Norw. Meteorol. Inst., Oslo, Norway. PDF
  12. Vestreng, V., K. Mareckova, S. Kakareka, A. Malchykhina and T. Kukharchyk. Inventory Review 2007; Emission Data reported to LRTAP Convention and NEC Directive, MSC-W Technical Report 1/07, Norw. Meteorol. Inst., Oslo, Norway, 2007.
  13. Vinken, G. C. M, K. F. Boersma, D. J. Jacob, and E. W. Meijer, Accounting for non-linear chemistry of ship plumes in the GEOS-Chem global chemistry transport model, Atmos. Chem. Phys., 11, 11707-11722, 2011. Link
  14. Wang, C., J. J. Corbett, and J. Firestone, Improving Spatial representation of Global Ship Emissions Inventories, Environ. Sci. Technol., 42 (1), 193-199, 2008. Link

--Bob Y. 10:31, 1 December 2011 (EST)