GFAS biomass burning emissions
Overview
NOTE: The GFAS biomass burning emissions inventory is available for simulations with GEOS-Chem 12.2.0 and later via the HEMCO emissions component. While the standard GEOS-Chem simulation uses GFED4 biomass burning emissions, you may select GFAS instead of GFED4 if your research requires it.
NOTE: The HEMCO_Config.rc generated by the gcCopyRundirs script from the unit tester will result in HEMCO errors when GFAS biomass burning emissions are enabled. Please see the example HEMCO configuration snippet later on this page for working HEMCO configuration.
From the GFAS website:
The Global Fire Assimilation System (GFAS) assimilates fire radiative power (FRP) observations from satellite-based sensors to produce daily estimates of biomass burning emissions. It has been extended to include information about injection heights derived from fire observations and meteorological information from the operational weather forecasts of ECMWF.
FRP observations currently assimilated in GFAS are the NASA Terra MODIS and Aqua MODIS active fire products (http://modis-fire.umd.edu/pages/ActiveFire.php).
GFAS data includes: Fire Radiative Power (FRP), dry matter burnt and biomass burning emissions.
Data are available globally on a regular lat-lon grid with horizontal resolution of 0.1 degrees from 2003 to present.
This page describes the download, processing and uploading of the CAMS GFAS biomass burning emissions inventory undertaken by the University of York and the choices made in the associated HEMCO configuration file. GFAS emissions are produced daily by the ECMWF as part of their CAMS project. More details can be found in the ECMWF wiki.
The files produced by ECMWF contain emissions for a number of fields. The files are produced at a global. 0.1x0.1 resolution. A full list of fields is given in the File Contents section.
Data Download
At the start of a new month, the daily data from the previous month is downloaded to York. Due to file transfer limits this is achieved as two transfers. One covering days 1-15 of the month, the second covering days 16-28/29/30/31. The Python script to perform the download can be found in GitHub.
Data Processing
Various changes are made to the files to make them consistent with HEMCO and COARDS.
- In order to make the file COARDS compliant, additional 'title', 'conventions', and 'history' attributes are added:
- The ‘title’ attribute gives the title of of the dataset and the year/month
- The ‘conventions’ attribute gives the name of the conventions adopted in the file (COARDS, in this case)
- The ‘history’ attribute gives a textual history of processing that has been applied to the contained data
- 'time' is converted from “hours since 1900-01-01 00:00:0.0” to “hours since 1970-01-01 00:00:0.0”
- Latitude value sequence is reversed - CAMS data has latitude values from 90N to -90N where HEMCO requires -90N to 90N
- For each data set variable:
- 'units', 'long_name', 'missing_value' are set
- the modal value in each input half-monthly variable is set to zero (if it is an emission variable), or the output missing value otherwise. There does not appear to be a consistent missing value in the output from the ECMWF data API for this data set in NetCDF format; as this is sparse data, the modal value will be missing data
- Half-monthly data is concatenated, reversing the latitude dimension
- For the mean altitude of maximum injection variable:
- Where there is no CO emission, i.e. no fire, mean altitude of maximum injection value is set to the output missing value
- Where there is CO emission, i.e. fire, and the mean altitude of maximum injection value is between -1.0 and 1.0 (exclusive), mean altitude of maximum injection value is set to 0.0 (i.e. surface)
The final two steps are taken to further clean up inconsistencies in missing value in the output from the ECMWF data API for this data set in NetCDF format.
All variables are compressed at NetCDF 'level 4' when created, decreasing the size of the output NetCDF files on disk. Variables are chunked with the following sizes:
time/1, lat/1800, lon/3600
as suggested by the GEOS-Chem wiki. For further reading about chunking in NetCDF files, see this Unidata article.
Once a month of data has been preprocessed, it is put into a single netCDF file called GFAS_$YYYY$MM.nc. It is then transferred to the GEOS-Chem Support Team in Harvard. The preprocessing and transfer scripts can be found in GitHub.
File Contents
Each file contains daily gridded data for a specific month at global 0.1x0.1 resolution. A table of variables follows:
Variable Short Name | Variable Long Name | Unit |
time | time | Hours since 1970-01-01 00:00:0.0 |
lat | latitude | Degrees North |
lon | longitude | Degrees East |
cfire | Wildfire overall flux of burnt carbon | kg/m2/s |
crfire | Wildfire combustion rate | kg/m2/s |
co2fire | Wildfire flux of carbon dioxide | kg/m2/s |
cofire | Wildfire flux of carbon monoxide | kg/m2/s |
ch4fire | Wildfire flux of methane | kg/m2/s |
nmhcfire | Wildfire flux of non-methane hydrocarbons | kg/m2/s |
h2fire | Wildfire flux of hydrogen | kg/m2/s |
noxfire | Wildfire flux of nitrogen oxides (NOx) | kg/m2/s |
n2ofire | Wildfire flux of nitrous oxide | kg/m2/s |
pm2p5fire | Wildfire flux of particulate matter (PM2.5) | kg/m2/s |
tpmfire | Wildfire flux of total particulate matter | kg/m2/s |
tcfire | Wildfire flux of total carbon in aerosols | kg/m2/s |
ocfire | Wildfire flux of organic carbon | kg/m2/s |
bcfire | Wildfire flux of of black carbon | kg/m2/s |
so2fire | Wildfire flux of sulfur dioxide | kg/m2/s |
ch3ohfire | Wildfire flux of methanol (CH3OH) | kg/m2/s |
c2h5ohfire | Wildfire flux of ethanol (C2H5OH) | kg/m2/s |
c3h8fire | Wildfire flux of propane (C3H8) | kg/m2/s |
c2h4fire | Wildfire flux of ethene (C2H4) | kg/m2/s |
c3h6fire | Wildfire flux of propene (C3H6) | kg/m2/s |
c5h8fire | Wildfire flux of isoprene (C5H8) | kg/m2/s |
terpenesfire | Wildfire flux of terpenes (C5H8) | kg/m2/s |
toluenefire | Wildfire flux of lumped toluene (C7H8 + C6H6 + C8H10) | kg/m2/s |
hialkenesfire | Wildfire flux of higher alkenes (CnH2n C>=4) | kg/m2/s |
hialkanesfire | Wildfire flux of higher alkanes (CnH2n+2 C>=4) | kg/m2/s |
ch2ofire | Wildfire flux of formaldehyde (CH20) | kg/m2/s |
c2h4ofire | Wildfire flux of acetaldehyde (C2H40) | kg/m2/s |
c3h6ofire | Wildfire flux of acetone (C3H60) | kg/m2/s |
nh3fire | Wildfire flux of ammonia (NH3) | kg/m2/s |
c2h6sfire | Wildfire flux of dimethyl sulfide (DMS) (C2H6S) | kg/m2/s |
c2h6fire | Wildfire flux of ethane (C2H6) | kg/m2/s |
c7h8fire | Wildfire flux of toluene (C7H8) | kg/m2/s |
c6h6fire | Wildfire flux of benzene (C6H6) | kg/m2/s |
c8h10fire | Wildfire flux of xylene (C8H10) | kg/m2/s |
c4h8fire | Wildfire flux of butenes (C4H8) | kg/m2/s |
c5h10fire | Wildfire flux of pentenes (C5H10) | kg/m2/s |
c6h12fire | Wildfire flux of hexene (C6H12) | kg/m2/s |
c8h16fire | Wildfire flux of octene (C8H16) | kg/m2/s |
c4h10fire | Wildfire flux of butanes (C4H10) | kg/m2/s |
c5h12fire | Wildfire flux of pentanes (C5H12) | kg/m2/s |
c6h14fire | Wildfire flux of hexanes (C6H14) | kg/m2/s |
c7h16fire | Wildfire flux of heptane (C7H16) | kg/m2/s |
offire | Wildfire fraction of area observed | Dimensionless |
frpfire | Wildfire radiative power | W/m2 |
mami | Mean altitude of maximum injection | m |
apt | Altitude of plume top | m |
Implementation in GEOS-Chem
Not all of the species in the emissions files can be mapped onto GEOS-Chem species by default. The following is taken from a HEMCO_Config.rc file and shows a possible mapping. The emissions here are uniformly distributed between the surface and the mean altitude of maximum injection given by ECMWF, using the scale factor as defined below. Removing the L=1:scal300 from the species mapping will place all emissions at the surface.
#============================================================================== # --- GFAS biomass burning --- #============================================================================== (((GFAS 0 GFAS_CO $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc cofire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s CO 75 5 3 0 GFAS_SOAP $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc cofire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s SOAP 75/281 5 3 0 GFAS_NO $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc noxfire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s NO 75 5 3 0 GFAS_BCPI $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc bcfire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s BCPI 70/75 5 3 0 GFAS_BCPO $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc bcfire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s BCPO 71/75 5 3 0 GFAS_OCPI $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc ocfire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s OCPI 72/75 5 3 0 GFAS_OCPO $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc ocfire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s OCPO 73/75 5 3 0 GFAS_CO2 $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc co2fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s CO2 75 5 3 0 GFAS_CH4 $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc ch4fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s CH4 75 5 3 0 GFAS_SO2 $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc so2fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s SO2 75 5 3 0 GFAS_NH3 $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc nh3fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s NH3 75 5 3 0 GFAS_ACET $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc c3h6ofire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s ACET 75 5 3 0 GFAS_ALD2 $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc c2h4ofire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s ALD2 75 5 3 0 GFAS_ALK4 $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc hialkanesfire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s ALK4 75 5 3 0 GFAS_PRPE1 $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc hialkenesfire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s PRPE 75 5 3 0 GFAS_PRPE2 $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc c3h6fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s PRPE 75 5 3 0 GFAS_C2H6 $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc c2h6fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s C2H6 75 5 3 0 GFAS_C3H8 $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc c3h8fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s C3H8 75 5 3 0 GFAS_CH2O $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc ch2ofire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s CH2O 75 5 3 0 GFAS_C2H4 $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc c2h4fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s C2H4 75 5 3 0 GFAS_ISOP $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc c5h8fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s ISOP 75 5 3 0 GFAS_DMS $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc c2h6sfire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s DMS 75 5 3 0 GFAS_TOLU $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc c7h8fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s TOLU 75 5 3 0 GFAS_BENZ $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc c6h6fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s BENZ 75 5 3 0 GFAS_XYLE $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc c8h10fire 2003-2019/1-12/1-31/0 C xyL=1:scal300 kg/m2/s XYLE 75 5 3 )))GFAS #============================================================================== # --- GFAS scale factors --- #============================================================================== 300 GFAS_EMITL $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc mami 2003-2019/1-12/1-31/0 C xy m 1
Previous issues that are now resolved
Fix GFAS_SOAP entry in HEMCO_Config.rc
This update was included in GEOS-Chem 12.3.0, which was released on 01 Apr 2019.
The original implementation of GFAS will give HEMCO errors when GFAS biomass burning emissions are enabled.
HEMCO ERROR: Illegal altitude unit ERROR LOCATION: GetIdx (hco_geotools_mod.F90) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! HEMCO ERROR: Error getting vertical index at location 1 45 : GFAS_SOAP
To resolve the issue, change the GFAS_SOAP line as indicated below:
(((GFAS 0 GFAS_CO $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc cofire 2003-2018/1-12/1-31/0 C xyL=1:scal300 kg/m2/s CO 75 5 3 0 GFAS_SOAP - - - - - - SOAP 75/281 5 3 0 GFAS_SOAP $ROOT/GFAS/v2018-09/$YYYY/GFAS_$YYYY$MM.nc cofire 2003-2018/1-12/1-31/0 C xyL=1:scal300 kg/m2/s SOAP 75/281 5 3
--Melissa Sulprizio (talk) 16:01, 12 March 2019 (UTC)
Citation
Please acknowledge the use of this data set according to the terms of the Copernicus CAMS License agreement:
Contains modified Copernicus Atmosphere Monitoring Service Information 2018
References
- Di Giuseppe, F., S. Rémy, F. Pappenberger, and F. Wetterhall, Combining fire radiative power observations with the fire weather index improves the estimation of fire emissions, Atmos. Chem. Phys., 18, 5359-5370, https://doi.org/10.5194/acp-18-5359-2018, 2018.
- Rémy, S., A. Veira, R. Paugam, M. Sofiev, J.W. Kaiser, F. Marenco, S.P. Burton, A. Benedetti, R.J. Engelen, R. Ferrare, J.W. Hair, Two global data sets of daily fire emission injection heights since 2003, Atmos. Chem. Phys., 17, 2921-2942, https://doi.org/10.5194/acp-17-2921-2017, 2017.
- Andela, N. (VUA), J.W. Kaiser (ECMWF, KCL), A. Heil (FZ Jülich), T.T. van Leeuwen (VUA), G.R. van der Werf (VUA), M.J. Wooster (KCL), S. Remy (ECMWF) and M.G. Schultz (FZ Jülich), Assessment of the Global Fire Assimilation System (GFASv1).
- Kaiser, J. W., A. Heil, M.O. Andreae, A. Benedetti, N.,Chubarova, L. Jones, J.-J. Morcrette, M. Razinger, M.G. Schultz, M. Suttie, and G.R. van der Werf, Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527-554.(2012)
- Xu, W., M.J. Wooster, G. Roberts, P. Freeborn, New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America, Remote Sensing of Environment, 114, 1876-1895, 2010.
- Heil, A., J.W. Kaiser, G.R. van der Werf, M.J. Wooster, M.G. Schultz, H.D. van der Gon, Assessment of the Real-Time Fire Emissions (GFASv0) by MACC, ECMWF Tech. Memo No. 628, 2010.
- Di Giuseppe, F., S. Remy, F. Pappenberger, F. Wetterhall, Improving GFAS and CAMS biomass burning estimations by means of the Global ECMWF Fire Forecast system (GEFF), ECMWF Tech. Memo No. 790, 2016.