Ship emissions

From Geos-chem
Revision as of 16:26, 23 February 2010 by Bmy (Talk | contribs) (ICOADS)

Jump to: navigation, search

This page describes the various ship emissions inventories that have been implemented in GEOS-Chem.

Overview

At present there are several different ship emissions options in GEOS-Chem.

ARCTAS
The ARCTAS pre-mission ship SO2 emissions from David Streets. [Eyring et al, 2005]
EMEP
...
ICOADS
Emission inventory based on data from the nternational Comprehensive Ocean−Atmosphere Data Set (ICOADS), the Automated Mutual-Assistance Vessel Rescue System (AMVER) data sets [Wang et al, 2008].

Starting with GEOS-Chem v8-01-04, ship-emitted NOx is no longer emitted directly as NOx, but as the combination HNO3 + 10*O3, following Chen et al [2005].

ARCTAS

The ARCTAS pre-mission inventory of SO2 was first introduced in GEOS-Chem v8-01-04.

Philippe Le Sager wrote:

The ship emission is based on the work by Eyring et al., JGR 2005, which estimates the total international ship emissions for 1985, 1990, 2001, and 2020 (projection). The ship emission for each individual year is interpreted based on the above years, and the spatial pattern (gridded) is mapped based on the EDGAR gridded ship emission for 2000 (total amount from EDGAR is scaled to Eyring-based number).
If you want to reference the work on publication or website, you may either mention Diehl et al., manuscript in preparation, 2009" or refer to the AeroCom readme document (prepared by Diehl):

EMEP

ICOADS

The ICOADS inventory was first introduced in GEOS-Chem v8-02-03. Chulkyu Lee worked on implementing it into GEOS-Chem. The source code is in file icoads_ship_mod.f

From Wang et al, 2008:

Ship activity patterns depicted by the International Comprehensive Ocean−Atmosphere Data Set (ICOADS), the Automated Mutual-Assistance Vessel Rescue System (AMVER) data set, and their combination demonstrate different spatial and statistical sampling biases. These differences could significantly affect the accuracy of ship emissions inventories and atmospheric modeling. We demonstrate (using ICOADS) a method to improve global-proxy representativeness by trimming over-reporting vessels that mitigates sampling bias, augment the sample data set, and account for ship heterogeneity. Apparent under-reporting to ICOADS and AMVER by ships near coastlines, perhaps engaged in coastwise (short sea) shipping especially in Europe, indicates that bottom-up regional inventories may be more representative locally. Primarily due to the long time series available publicly for ICOADS data, the improved ICOADS data set may be the most appropriate global ship traffic proxy identified to date to be used for a top-down approach. More generally, these three spatial proxies can be used together to perform uncertainty analyses of ship air-emissions impacts on a global scale (http://coast.cms.udel.edu/GlobalShipEmissions/).

References

  1. Chen, G., et al. An investigation of the chemistry of ship emission plumes during ITCT 2002, J. Geophys. Res., 110, D10S90, doi:10.1029/2004JD005236, 2005.
  2. Eyring et al, JGR, 2005 (need citation!)
  3. Wang, C., J. J. Corbett, and J. Firestone, Improving Spatial representation of Global Ship Emissions Inventories, Environ. Sci. Technol., 42 (1), 193-199, 2008. Link

--Bob Y. 11:22, 23 February 2010 (EST)

Known issues

None at this time.