Difference between revisions of "GEOS-Chem Adjoint"

From Geos-chem
Jump to: navigation, search
(Contact information)
(Distribution and Use)
(43 intermediate revisions by 16 users not shown)
Line 1: Line 1:
<big><big><strong>Adjoint Working Group</strong></big></big>
+
<big><big><strong>Adjoint Model and Data Assimilation Working Group</strong></big></big>
  
 
== Contact information ==
 
== Contact information ==
Line 50: Line 50:
 
== Forward Model Code ==
 
== Forward Model Code ==
  
The forward model on which the adjoint is based originally corresponded to GEOS-Chem v8-02-01. It was subsequently updated as follows:
+
The forward model on which the adjoint is based originally corresponded to GEOS-Chem v8-02-01. It was subsequently updated as follows:
 
   
 
   
 
* KPP solver for gas-phase chemistry (as in GCv8-02-03)
 
* KPP solver for gas-phase chemistry (as in GCv8-02-03)
Line 58: Line 58:
 
* Apply bug fixes from GCv8-02-04 listed [http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_v8-02-04#Previous_issues_now_resolved_in_v8-02-04 here]
 
* Apply bug fixes from GCv8-02-04 listed [http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_v8-02-04#Previous_issues_now_resolved_in_v8-02-04 here]
  
All bug fixes and model updates were previous listed at the top of inverse_driver.f.  We have now switched to documenting the code development cycle here in the wiki, see the following section.  
+
All bug fixes and model updates were previous listed at the top of inverse_driver.f.  Since then the code has been kept up to date with bug fixes and some forward model updates in v9 and v10. We have now switched to documenting the code development cycle here in the wiki, see the following section.
  
 
== Code Versions, Bug Fixes and Developments ==  
 
== Code Versions, Bug Fixes and Developments ==  
  
 
=== Current GEOS-Chem adjoint version released ===
 
=== Current GEOS-Chem adjoint version released ===
*[[GEOS-Chem_Adjoint_v35]] (You will download this version when you check out.)
+
*[[GEOS-Chem_Adjoint_v36]] (You will download this version when you check out.)
  
 
=== Previous GEOS-Chem adjoint versions released ===
 
=== Previous GEOS-Chem adjoint versions released ===
 +
*[[GEOS-Chem_Adjoint_v35]] (You can checkout the last release of this with: git checkout v35n)
 
*[[GEOS-Chem_Adjoint_v34]]
 
*[[GEOS-Chem_Adjoint_v34]]
 
*[[GEOS-Chem_Adjoint_v33]]  
 
*[[GEOS-Chem_Adjoint_v33]]  
Line 77: Line 78:
 
** GEOS-3 <i>needs testing</i>
 
** GEOS-3 <i>needs testing</i>
 
** GEOS-4
 
** GEOS-4
** GEOS-5  
+
** GEOS-5
 +
** GEOS-FP
 +
** MERRA and MERRA2 <i>in progress</i>
 
* model resolution
 
* model resolution
 
** 4 x 5
 
** 4 x 5
** 2 x 2.5  
+
** 2 x 2.5
** Nested Asia and NA
+
** 0.5 x 0.666
 +
** 0.25 x 0.3125
 +
** Nested China and North America
 +
** Small Domain China and North America
 
* Forward model processes
 
* Forward model processes
 
** convection
 
** convection
Line 158: Line 164:
  
 
=== User's guide ===
 
=== User's guide ===
A User's Guide v35 is available.  [http://adjoint.colorado.edu/~yanko/gcadj_std/gc_adj_man.pdf User's Guide v35]  
+
A User's Guide v36 is available.  [https://o365coloradoedu-my.sharepoint.com/:b:/g/personal/henzed_colorado_edu/EZnMaQ_EFDJPqmjweVDjeJsBWvNMYMFkwMrO79xoEz24fw?e=e7miKT User's Guide v36]  
  
Previous version v32-v33 available at [http://adjoint.colorado.edu/~daven/gcadj_std/GC_adj_man.pdf User's Guide v32]
+
Manuals for previous versions are available [https://drive.google.com/drive/folders/1pdp0Rax0V0gNcHj_W--f-TtdK7iTjs5r?usp=sharing here]
  
Quick Introduction to GitLab is available at [http://adjoint.colorado.edu/~yanko/gcadj_std/GitLab_Tutorial.pdf GitLab Tutorial]
+
Quick Introduction to GitLab is available at [https://drive.google.com/file/d/1GYQObL12D0WynmC1BO2KRaHq87Ww7COg/view?usp=sharing GitLab Tutorial]
  
 
The forward version of the code is based on v9-02 here is the [http://acmg.seas.harvard.edu/geos/doc/archive/man.v9-02/ User's Guide]
 
The forward version of the code is based on v9-02 here is the [http://acmg.seas.harvard.edu/geos/doc/archive/man.v9-02/ User's Guide]
  
 
=== Code flowchart ===
 
=== Code flowchart ===
Meemong Lee has created a detailed flowchart of the inverse model code structure. http://adjoint.colorado.edu/~daven/gcadj_std/flowchart.pdf
+
Meemong Lee has created a detailed flowchart of the inverse model code structure. [https://drive.google.com/file/d/1ZUp3Q61Ey0vWtVxidaEAwwfMrJG8IjVk/view?usp=sharing flowchart.pdf]
  
 
=== Plotting tools ===
 
=== Plotting tools ===
  
Some IDL and MATLAB routines for plotting benchmark results.  http://adjoint.colorado.edu/~daven/gcadj_std/tools.tar.gz
+
Some IDL and MATLAB routines for plotting benchmark results.  [https://drive.google.com/file/d/1OLVNYd_yQclvzIqZR6AcleLMBcdCgGl0/view?usp=sharing tools.tar.gz]
  
 
=== Background papers and presentations ===
 
=== Background papers and presentations ===
  
Several articles and presentations (including a GC adjoint modeling clinic overview from IGC5) providing background information about adjoints.  http://adjoint.colorado.edu/~daven/gcadj_std/adj_articles.tar.gz
+
Several articles and presentations (including a GC adjoint modeling clinic overview from IGC5) providing background information about adjoints.  [https://drive.google.com/file/d/1FmiZM2PajOxMk3-wQSovTgqowFXwmqMX/view?usp=sharing adj_articles.tar.gz]
  
 
== Distribution and Use ==
 
== Distribution and Use ==
Code for the adjoint is distributed through GITLAB, a web interface connected to a GIT server located at adjoint.colorado.edu. You can access GITLAB at http://adjoint.colorado.edu:8080 after your account is created. Here is our [[Quick Start Guide]].  
+
Code for the adjoint is distributed through GITLAB, a web interface connected to a GIT server located at adjoint.colorado.edu. You can access GITLAB at https://adjoint.colorado.edu:8080 after your account is created. Here is our [[Quick Start Guide]].  
  
 
Even if your office mate has a copy of the code, the best way to obtain the model is to get an account for yourself and download a version from the repository.  So please do not copy code directly from others or pass the code along to third parties.  This vastly helps with tracking developments and keeping up with model updates.  
 
Even if your office mate has a copy of the code, the best way to obtain the model is to get an account for yourself and download a version from the repository.  So please do not copy code directly from others or pass the code along to third parties.  This vastly helps with tracking developments and keeping up with model updates.  
Line 187: Line 193:
  
 
=== Quick guide to GIT ===  
 
=== Quick guide to GIT ===  
As of version 34 we started using git versioning system and the GitLab web interface. We prepared [http://adjoint.colorado.edu/~yanko/gcadj_std/GitLab_Tutorial.pdf GitLab Tutorial] to help users get used to the web interface and git. We recommend first taking a look at GIT manual to get a general feel for how this tools works (e.g., [http://git-scm.com/documentation GIT Documentation] or [http://www.kernel.org/pub/software/scm/git/docs/git.html GIT Manual Page]).  
+
As of version 34 we started using git versioning system and the GitLab web interface. We prepared [https://drive.google.com/file/d/1GYQObL12D0WynmC1BO2KRaHq87Ww7COg/view?usp=sharing GitLab Tutorial] to help users get used to the web interface and git. We recommend first taking a look at GIT manual to get a general feel for how this tools works (e.g., [http://git-scm.com/documentation GIT Documentation] or [http://www.kernel.org/pub/software/scm/git/docs/git.html GIT Manual Page]).  
  
  
Line 258: Line 264:
  
 
Authors of new additions to the standard code should be offered co-authorship on the first round of presentations and publications to come of their development.  Features currently falling in this category and their developers are:
 
Authors of new additions to the standard code should be offered co-authorship on the first round of presentations and publications to come of their development.  Features currently falling in this category and their developers are:
 
+
* (v36) UCX  Thibaud Fritz,  Irene Dedoussi, MIT, TU Delft
 
* (v35j) MOPITT CO Observation operator.  Zhe Jiang; Yanko Davila, CU Boulder.  
 
* (v35j) MOPITT CO Observation operator.  Zhe Jiang; Yanko Davila, CU Boulder.  
* (v35j) OMI SO2, OMI NO2 and TES O3 Observation operators. Martin Keller, U Toronto; Yi Wang, UNL;  Yanko Davila, CU Boulder.  
+
* (v35j) OMI SO2, OMI NO2 and TES O3 Observation operators. Martin Keller, U Toronto; Yi Wang, U-Iowa;  Yanko Davila, CU Boulder.
 +
* (v35j) MODIS radiance observation operators,  Xiaoguang Xu and Jun Wang, U-Iowa.
 
* (v35) HTAP Emissions Inventory.  Kateryna Lapina, Daven Henze and Yanko Davila, CU Boulder.
 
* (v35) HTAP Emissions Inventory.  Kateryna Lapina, Daven Henze and Yanko Davila, CU Boulder.
 
* (v35) NEI2008 Emissions Inventory.  Katie Travis; Fabien Paulot, Harvard; Hyungmin Lee, and Daven Henze, CU Boulder.  
 
* (v35) NEI2008 Emissions Inventory.  Katie Travis; Fabien Paulot, Harvard; Hyungmin Lee, and Daven Henze, CU Boulder.  
Line 270: Line 277:
  
  
Citation of the appropriate [[GEOS-Chem_Adjoint#Journal_Articles|journal articles]] for mature developments is also encouraged, as well as considering aspects of [http://acmg.seas.harvard.edu/geos/geos_credit.html co-authorship for the forward model].  
+
Citation of the appropriate [[GEOS-Chem_Adjoint#Journal_Articles|journal articles]] for mature developments is also encouraged, as well as considering aspects of [https://geos-chem.seas.harvard.edu/geos-chem-narrative co-authorship for the forward model].  
  
 
Overall, if you have any questions about authorship, even for a conference presentation, please contact Daven Henze.
 
Overall, if you have any questions about authorship, even for a conference presentation, please contact Daven Henze.
  
 +
<!--
 
== Current GEOS-Chem Adjoint Research Projects (please add yours!) ==
 
== Current GEOS-Chem Adjoint Research Projects (please add yours!) ==
 +
 +
 
{| border=1 cellspacing=0 cellpadding=5
 
{| border=1 cellspacing=0 cellpadding=5
 
|- bgcolor="#cccccc"
 
|- bgcolor="#cccccc"
Line 286: Line 296:
 
|Aerosol emission modeling in East Asia  
 
|Aerosol emission modeling in East Asia  
 
|[mailto:koo@anyang.ac.kr Youn Seo Koo]
 
|[mailto:koo@anyang.ac.kr Youn Seo Koo]
 +
|-
 +
 +
|-
 +
|Carnegie Mellon University
 +
|Carbon Flux Inverse Modeling
 +
|[mailto:mcstanle@andrew.cmu.edu Mike Stanley]
 +
|-
 +
 +
|-
 +
|Columbia University
 +
|Long-Range Transport of Arctic Aerosols
 +
|[mailto:ses2271@columbia.edu Sarah Smith]
 
|-
 
|-
  
Line 307: Line 329:
 
|Constraints on Aerosol Sources
 
|Constraints on Aerosol Sources
 
|[mailto:zhen.qu@colorado.edu Zhen Qu]
 
|[mailto:zhen.qu@colorado.edu Zhen Qu]
 +
|-
 +
|CU Boulder
 +
|Source Receptor Relationships in Air Quality
 +
|[mailto:muhammad.nawaz@colorado.edu Omar Nawaz]
 
|-
 
|-
  
Line 321: Line 347:
 
|Sensitivity of global PM2.5-induced mortality to emissions
 
|Sensitivity of global PM2.5-induced mortality to emissions
 
|[mailto:colin.lee@dal.ca Colin Lee]
 
|[mailto:colin.lee@dal.ca Colin Lee]
 +
|-
 +
|Dalhousie University
 +
|Top-down constraints on NH3 emissions
 +
|[mailto:chi.li@dal.ca Chi Li]
 
|-
 
|-
 
|Dalhousie University
 
|Dalhousie University
Line 337: Line 367:
 
|Harvard
 
|Harvard
 
|Methane
 
|Methane
|[mailto:maasakkers@seas.harvard.edu Bram Maasakkers]
+
|[mailto:maasakkers@seas.harvard.edu Bram Maasakkers], [mailto:mpayer@seas.harvard.edu Melissa Sulprizio]
 
|-
 
|-
 
|Harvard
 
|Harvard
Line 374: Line 404:
 
| Adjoint sensitivity analysis for satellite constellation design
 
| Adjoint sensitivity analysis for satellite constellation design
 
|[mailto:kevin.bowman@jpl.nasa.gov Kevin Bowman]
 
|[mailto:kevin.bowman@jpl.nasa.gov Kevin Bowman]
 +
|-
 +
 +
|-
 +
|MIT
 +
|UCX Adjoint Development, Sensitivities to stratospheric-oriented objective functions, Source Receptor Relationships in Air Quality
 +
|[mailto:fritzt@mit.edu Thibaud Fritz]
 
|-
 
|-
 
|-
 
|-
Line 390: Line 426:
 
|[mailto:hengmao.wang@gmail.com Hengmao Wang]
 
|[mailto:hengmao.wang@gmail.com Hengmao Wang]
 
|-
 
|-
 +
|-
 +
|Nazarbayev University
 +
|Emissions influences on NO_2 columns
 +
|[mailto:mehdi.torkmahalleh@nu.edu.kz Mehdi Torkmahalleh]
  
 
|-
 
|-
Line 427: Line 467:
 
|-
 
|-
 
|Seoul National University  
 
|Seoul National University  
|Sensitivity and Inverse Modeling of Air Pollution in Korea
+
|VOC emission constraints over Korea using OMI satellite retrieval and DC-8 flight measurements from KORUS-AQ
|[mailto:hyungmin.lee@colorado.edu Hyung-Min Lee]
+
|[mailto:hyungmin.lee@snu.ac.kr Hyung-Min Lee]
 
|-
 
|-
 
|Seoul National University  
 
|Seoul National University  
Line 465: Line 505:
 
|Nitrogen deposition related to climate strategy projections with GCAM
 
|Nitrogen deposition related to climate strategy projections with GCAM
 
|[mailto:cbaublitz@ufl.edu Colleen Baublitz], [mailto:barronh@ufl.edu Barron H. Henderson]
 
|[mailto:cbaublitz@ufl.edu Colleen Baublitz], [mailto:barronh@ufl.edu Barron H. Henderson]
 +
|-
 +
 +
|-
 +
| University of Iowa
 +
|Multiple-sensor (MODIS, MISR, OMI, etc.) constraints of aerosol emissions and application for AQ forecast; OSSE for future satellite missions
 +
|[mailto:jun-wang-1@uiowa.edu Jun Wang], [mailto:yi-wang-4@uiowa.edu Yi Wang]
 
|-
 
|-
  
Line 511: Line 557:
  
 
|-
 
|-
|Yangtze River Delta Center for Environmental Meteorology Prediction and Warning
+
|Georgia Institute of Technology
|Air quality, anthropogenic emissions and sensitivities
+
|NH3 emissions
|[mailto:guyixuan@mail.iap.ac.cn Yixuan Gu]
+
|[mailto:chenylis10@gmail.com Yilin Chen]
 +
|-
 +
 
 +
|-
 +
|Institute of Atmospheric Physics, Chinese Academy of Sciences
 +
|Data assimilation of atmospheric CO2
 +
|[mailto:changwy@mail.iap.ac.cn Wenyuan Chang]
 +
|-
 +
 
 +
|-
 +
|Institute of Atmospheric Physics, Chinese Academy of Sciences
 +
|Adjoint analysis for CO2 and air pollutants
 +
|[mailto:fuyu1109@gmail.com Yu Fu]
 +
|-
 +
 
 
|}
 
|}
 +
-->
 +
 +
== GCHP adjoint ==
 +
As of GEOS-Chem v13.1.0, the GCHP model has included the adjoint modeling framework.  Currently this supports the offline CO2 simulation.  The simulation so far only treats the adjoint of advection. The simulation capabilities include sensitivities with respect to initial conditions and emissions, and a global finite difference testing framework for the initial condition sensitivities.  More about using GCHP adjoint can be found in the user guide [[https://drive.google.com/drive/folders/16-H9nncHMwXirjatMhLGL1WNqwF05_S-?usp=sharing here]].
  
 
== Publications ==
 
== Publications ==
  
 
=== Journal Articles ===
 
=== Journal Articles ===
 +
* '''2022/submitted/in press'''
 +
**Sokharavuth, P., S. Thiv, C. Nara, C. Him, S. Sokyimeng, D. K. Henze, R Holmes, J. C.I. Kuylenstierna, C. S. Malley, E. Michalopoulou, J. Slater, Air pollution mitigation assessment to inform Cambodia’s first Clean Air Plan, submitted.
 +
**Fritz, T. M., I. C. Dedoussi, S. D. Eastham, R. L. Speth, D. K. Henze, S. R. H. Barrett, Identifying the ozone-neutral aircraft cruise altitude, Atmos. Environ., 276, 1, 119057, https://doi.org/10.1016/j.atmosenv.2022.119057.
 +
**Qu, Z, D. K. Henze, H. M. Worden, Zhe Jiang, B. Gaubert, N. Theys, W. Wang (2022), Sector-based top-down estimates of NOx, SO2, and CO emissions in East Asia, Geophys. Res. Let., 49, e2021GL096009, https://doi.org/10.1029/2021GL096009.
 +
**Choi, J., D. K. Henze, H. Cao, C. R. Nowlan, G. González Abad, H.-A. Kwon, H.-M. Lee, Y. J. Oak, R. J. Park, K. H. Bates, J. D. Maasakkers, A. Wisthaler, A. J. Weinheimer (2022), An inversion framework for optimizing non-methane VOC emissions using remote sensing and airborne observations in Northeast Asia during the KORUS-AQ field campaign, J. Geophys. Res., 127, e2021JD035844, https://doi.org/10.1029/2021JD035844.
 +
**Cao, H., D. K. Henze, L. Zhu, M. W. Shephard, K. Cady-Pereira, E. Dammers, M. Sitewell, M. Al- varado, C. Lonsdale, J. Bash, K. Miyazaki, C. Flechard, Y. Fauvel, R. W. Kruit, S. Feigenspan, C. Brümmer, F. Schrader, M. M. Twigg, Y. S. Tang, A. C. M. Stephens, K. Vincent, M. Meier, E. Seitler, C. Geels, T. Ellermann, S. L. Capps (2022), 4D-Var inversion of European NH3 emissions using CrIS NH3 measurements and GEOS-Chem adjoint with bi-directional and uni-directional flux schemes, J. Geo- phys. Res., 127, e2021JD035687, https://doi.org/10.1029/2021JD035687.
 +
 +
* '''2021'''
 +
**Nawaz, M. O., D. K. Henze, C. Harkins, H. Cao, B. Nault, D. Jo, J. Jimenez, S.C. Anenberg, D.L. Goldberg, Z. Qu (2021), Impacts of sectoral, regional, species, and day-specific emissions on air pollution and public health in Washington DC, Elementa, 9 (1),, 00043, https://doi.org/10.1525/elementa.2021.00043.
 +
**Yu, X., D. B. Millet, and D. K. Henze (2021), How well can inverse analyses of high-resolution satellite data resolve heterogenous methane fluxes? Geosci. Model Dev., 14, 7775–7793, https://doi.org/10.5194/ gmd-14-7775-2021.
 +
**Malley, C. S., W. K. Hicks, J. C. I. Kulyenstierna, E. Michalopoulou, A. Molotoks, J. Slater, C. G Heaps, S. Ulloa, J. Veysey, D. T. Shindell, D. K. Henze, O. Nawaz, S. C. Anenberg, B. Mantlana, T. P. Robinson (2021), Integrated assessment of global climate, air pollution, and dietary, malnutrition and obesity health impacts of food production and consumption between 2014 and 2018, Environ. Res. Commun., 3, 075001, https://doi.org/10.1088/2515-7620/ac0af9.
 +
**Stanevich, I., D. B. A. Jones, K. Strong, M. Keller, D. K. Henze, R. J. Parker, H. Boesch, D. Wunch, J. Notholt, C. Petri, T. Warneke, R. Sussmann, M. Schneider, F. Hase, R. Kivi, N. M. Deutscher, V. A. Ve- lazco, K. A. Walker, F. Deng, Characterizing model errors in chemical transport modelling of methane: Using GOSAT XCH4 data with weak constraint four-dimensional variational data assimilation, Atmos. Chem. Phys., 21, 9545–9572, https://doi.org/10.5194/acp-21-9545-2021.
 +
**Yu, X., D. B. Millet, K. C. Wells, D. K. Henze, H. Cao, T. J. Griffis, E. A. Kort, G. Plant, M. J. Deventer, R. K. Kolka, D. T. Roman, K. J. Davis, A. R. Desai, B. C. Baier, K. McKain, A. C. Czarnetzki, A. A. Bloom (2021), Aircraft-based inversions quantify the importance of wetlands and livestock for Upper Midwest methane emissions, Atmos. Chem. Phys., 21, 951–971, https://doi.org/10.5194/acp-21-951-2021.
 +
**Qu, Z., D. Wu, D. K. Henze, Y. Li, M. Sonenberg, F. Mao (2021), Transboundary transport of ozone pollution to a US border region: a case study of Yuma, Environ. Pollut., 273, 116421, https://doi.org/10.1016/j.env pol.2020.116421.
 +
**Wang, X., T.-M. Fu, L. Zhang, H. Cao, Q. Zhang, H. Ma, L. Shen, M. Evans, P. Ivatt, X. Lu, Y. Chen, X. Yang, L. Zhu, D. K. Henze (2021), Sensitivities of ozone air pollution in the Beijing-Tianjin-Hebei area to local and upwind precursor emissions using adjoint modeling, Environ. Sci. Technol., 55, 9, 5752?5762, https://doi.org/10.1021/acs.est.1c00131.
 +
**Chen, Z., J. Liu, D. K. Henze, D. N. Huntzinger, K. C. Wells, S. Sitch, P. Friedlingstein, E. Joet- zjer, V. Bastrikov, D. S. Goll, V. Haverd, A. K. Jain, E. Kato, S. Lienert, D. L. Lombardozzi, P.C. McGuire, J. R. Melton, J. E. M. S. Nabel, B. Poulter, H. Tian, A. J. Wiltshire, S. Zaehle, S. M. Miller (2021), Linking global terrestrial CO2 fluxes and environmental drivers: inferences from the Orbiting Car- bon Observatory 2 satellite and terrestrial biospheric models, Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021.
 +
 +
* '''2020'''
 +
**Qu, Z, D. K. Henze, O. R. Cooper, and J. L. Neu, Impacts of global NOx inversions on NO2 and ozone simulations, Atmos. Chem. Phys., 20, 13109–13130, https://doi.org/10.5194/acp-20-13109-2020.
 +
**Cao, H., D. K. Henze, M. W. Shephard, E. Dammers, K. Cady-Pereira, M. Alvarado, C. Lonsdale, G. Luo, F. Yu, L. Zhu, C. G. Danielson, E. S. Edgerton, Inverse modeling of NH3 sources using CrIS remote sensing measurements, Environ. Res. Lett., 15, 104082.
 +
**Elguindi, N., C. Granier, T. Stavrakou, S. Darras, M. Bauwens, H. Cao, C. Chen, H.A.C. Denier van der Gon, O. Dubovik, T. M. Fu, D. K. Henze, Z. Jiang, J. J. P. Kuenen, J. Kurokawa, C. Liousse, K. Miyazaki, J.-F. Müller, Z. Qu, K. Sekou, F. Solmon, B. Zheng, Intercomparison of magnitudes and trends in anthropogenic surface emissions from bottom-up inventories, top-down estimates, and emission scenarios, Earth’s Future, 8 (8), https://doi.org/10.1029/2020EF001520.
 +
**Kuylenstierna, J. C. I., C. G. Heaps, T. Ahmed, H. W. Vallack, W. K. Hicks, M. R. Ashmore, C. S. Malley, G. Wang, E. N. Lefevre, S. C. Anenberg, F. Lacey, D. T. Shindell, U. Bhattacharjee, D. K. Henze, Development of the Low Emissions Analysis Platform – Integrated Benefits Calculator (LEAP-IBC) tool to assess air quality and climate co-benefits: Application for Bangladesh, Environ. Int., 145, 106155, https://doi.org/10.1016/j.envint.2020.106155.
 +
**Mao, Y. H., X. C. Zhao, H. Liao, D. K. Henze, H. Cao, L. Zhang, J. Li, L. Ran, Q. Zhang, J. D. Li, Sources of black carbon during severe haze events in the Beijing-Tianjin-Hebei region using the adjoint method, Sci. Tot. Environ., 740 (20), 140149, https://doi.org/10.1016/j.scitotenv.2020.140149.
 +
**Nawaz, M. O., and D. K. Henze, Premature deaths in Brazil associated with long-term exposure to PM2.5 from Amazon fires between 2016-2019, Geo Health, 4, e2020GH000268, https://doi.org/10.1029 /2020GH000268.
 +
**Wang, Y., J. Wang, X. Xu, D. K. Henze, Z. Qu, Inverse modeling of SO2 and NOx emissions over China using multi-sensor satellite data: 1. formulation and sensitivity analysis, Atmos. Chem. Phys., 20, 6631–6650, https://doi.org/10.5194/acp-20-6631-2020.
 +
 +
* '''2019'''
 +
**Chen, C., O. Dubovik, D. K. Henze, M. Chin, T. Lapyonak, G. L. Schuster, F. Ducos, D. Fuertes, P. Litvinov, L. Li, A. Lopatin, Q. Hu, B. Torres (2019), Constraining global aerosol emissions using POLDER/ PARASOL satellite remote sensing observations, Atmos. Chem. Phys., 19, 14585–14606, https://doi.org/10.5194/acp-19-14585-2019.
 +
**Zhao, H., Q. Zhang, S. J. Davis, X. Li, Y. Liu, G. Geng, M. Li, B. Zheng, H. Huo, L. Zhang, D. K. Henze, K. He (2019), Inequality of household consumption and air pollution deaths in China, Nature Com., 10, 10, 4337, https://doi.org/10.1038/s41467-019-12254-x.
 +
**Philip, S., M. S. Johnson, C. Potter, V. Genovesse, D. F. Baker, K. D. Haynes, D. K. Henze, J. Liu, B. Poulter (2019), Prior biosphere model impact on global terrestrial CO2 fluxes estimated, Atmos. Chem. Phys., 19, 13267–13287, https://doi.org/10.5194/acp-19-13267-2019.
 +
**Yi, K., J. Meng, H. Yang, C. He, D. K. Henze, J. Liu, D. Guan, Z. Liu, L. Zhang, X. Zhu, Y. Cheng, S. Tao (2019), The cascade of global trade to large climate forcing over the Tibetan Plateau glaciers, Nature Com., 10, 3281, https://doi.org/10.1038/s41467-019-10876-9.
 +
**Zhang, X., D. B. A. Jones, M. Keller, T. W. Walker, Z. Jiang, D. K. Henze, H. M. Worden, A. E. Bourassa, D.A. Degenstein, Y. J. Rochon, S. Wofsy (2019), Quantifying emissions of CO and NOx using observations from MOPITT, OMI, TES, and OSIRIS, J. Geophys. Res., 124, 1170–1193, https://doi.org/10.1029/2018JD028670.
 +
**Qu, Z., D. K. Henze, N. Theys, J. Wang, W. Wang (2019), Hybrid mass balance / 4D-Var joint inversion of NOx and SO2 emissions in East Asia, J. Geophys. Res., 124, 8203–8224, https://doi.org/10.1029/2018JD030240.
 +
**Qu, Z., D. K. Henze, C. Li, N. Theys, Y. Wang, J. Wang, W. Wang, J. Han, C. Shim, R. R. Dickerson, X. Ren (2019), SO2 emissions estimated using OMI SO2 retrievals (2005-2017), J. Geophys. Res., 124, 8336–8359, https://doi.org/10.1029/2019JD030243.
 +
**Li, C., R. V. Martin, M. W. Shephard, M. J. Cooper, J. Kaiser, C. J. Lee, L. Zhang, D. K. Henze (2019), Assessing the iterative finite difference mass balance and 4D-Var methods to retrieve ammonia emissions over North America using synthetic Cross-track Infrared Sounder Observations, J. Geophys. Res., 124, 4222–4236. https://doi.org/10.1029/2018JD030183.
 +
**Choi, J., R. J. Park, H.-M. Lee, S. Lee, D. S. Jo, J. I. Jeong, D. K. Henze, J.-H. Woo, S.-J. Ban, M.-D. Lee, C.-S. Lim, M.-K. Park, H. J. Shin, S. Cho, D. Peterson, C.-K. Song (2019), Impacts of local vs. trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign, Atmos. Environ., 203, 196–205, https://doi.org/10.1016/j.atmosenv.2019.02.008.
 +
 +
* '''2018'''
 +
**Jiang, Z., B. C. McDonald, H. Worden, J. R. Worden, K. Miyazaki, Z. Qu, D. K. Henze, D. B. A. Jones, A. F. Arellano, E. V. Fischer, L. Zhu, K. F. Boersma (2018), Unexpected slowdown of US pollutant emission reduction in the past decade, Proc. Nat. Acad. Soc., 115(20), 5099--5104, doi:10.1073/pnas.1801191115.
 +
**Chen, C., O. Dubovik, D. K. Henze, T. Lapyonak, M. Chin, F. Ducos, P. Litvinov, X. Huang, L. Li (2018), Retrieval of desert dust and carbonaceous aerosol emissions over Africa from PARASOL/GRASP observations, Atmos. Chem. Phys., 18, 12551-12580, https://doi.org/10.5194/acp-18-12551-2018.
 +
**Cao, H., T.-M. Fu, L. Zhang, D. K. Henze, C. Chan Miller, C. Lerot, G. González Abad, I. De Smedt, Q. Zhang, M. van Roozendael, K. Chance, J. Li, J. Y. Zheng, Y. H. Zhao (2018), Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal, Atmos. Chem. Phys., 18, 15017-15046, https://doi.org/10.5194/acp-18-15017-2018.
 +
**Wells, K. C., D. B. Millet, N. Bousserez, D. K. Henze, T. J. Griffis, S. Chaliyakunnel, E. J. Dlugokencky, E. Saikawa, G. Xiang, R. G. Prinn, S. O'Doherty, D. Young, R. F. Weiss, G. S. Dutton, J. W. Elkins, P. B. Krummel, R. Langenfelds, L. P. Steele (2018), Top-down constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique, Atmos. Chem. Phys., 18, 735-756, https://doi.org/10.5194/acp-18-735-2018.
 +
**Zhang, L., Y. Chen, Y. Zhao, Y. D. K. Henze, L. Zhu, Y. Song, F. Paulot, X. Liu, Y. Pan, B. Huang (2018), Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates, Atmos. Chem. Phys., 18, 339-355, https://doi.org/10.5194/acp-18-339-2018.
 +
**Bousserez, N. and D. K. Henze (2018), Optimal and scalable methods to approximate the solutions of large-scale Bayesian problems: Theory and application to atmospheric inversions and data assimilation, Q. J. R. Meteorol. Soc., 144, 365 – 390, https://doi.org/10.1002/qj.3209.
 +
 +
 +
* '''2017'''
 +
**Xu, J., R. V. Martin, A. Morrow, S. Sharma, L. Huang, W. R. Leaitch, J. Burkart, H. Schulz, M. Zanatta, M. D. Willis, D. K. Henze, C. J. Lee, A. B. Herber, J. P. D. Abbatt (2017), Source attribution of Arctic black carbon constrained by aircraft and surface measurements, Atmos. Chem. Phys., 17, 11971-11989, https://doi.org/10.5194/acp-17-11971-2017.
 +
**Qi, L., Q. Li, D. K. Henze, H.-L. Tseng, and C. He, Sources of springtime surface black carbon in the Arctic: an adjoint analysis for April 2008 (2017), Atmos. Chem. Phys., 17, 9697-9716, https://doi.org/10.5194/acp-17-9697-2017.
 +
**Qu, Z., D. K. Henze, S. L. Capps, Y. Wang, X. Xu, J. Wang (2017), Monthly top-down NOx emissions for China (2005-2012): a hybrid inversion method and trend analysis, J. Geophys. Res., 122, 4600-4625, doi:10.1002/2016JD025852.
 +
**Lee, H.-M., R. J. Park, D. K. Henze, S. Leeb, C. Shim, H.-J. Shine, K.-J. Moone, J.-H. Woo (2017), PM2.5 source attribution for Seoul in May from 2009 to 2013 using GEOS-Chem and its adjoint model, Environmental Pollution, 221:377-38.
 +
**Jiang, Z., J. R. Worden, H. Worden, M. Deeter, D. B. A. Jones, A. Arellano, D. K. Henze (2017), A fifteen year record of CO emissions constrained by MOPITT CO observations, Atmos. Chem. Phys., 17, 4565-4583, doi:10.5194/acp-17-4565-2017
 +
**Xu, X., J. Wang, Y. Wang, D. K. Henze, L. Zhang, G. A. Grell, S. McKeen. and B. Wielicki (2017), Sense Size-Dependent Dust Loading and Emission from Space Using Reflected Solar and Infrared Spectral Measurements: An Observation System Simulation Experiment, J. Geophys. Res. Atmos., 122, 8233-8254, doi: 10.1002/2017JD026677.
 +
**Lacey F. G., E. A. Marais, D. K. Henze, C. J. Lee, A. van Donkelaar, R. V. Martin, M. P. Hannigan, C. Wiedinmyer, Improving present day and future estimates of anthropogenic sectoral emissions and the resulting air quality impacts in Africa, Faraday Discuss., 200, 397-412.
 +
**Cui, Y., J. Brioude, W. M. Angevine, J. Peischl, S. A. McKeen, S-W. Kim, J. Neuman, D. K. Henze, N. Bousserez, M. Fischer, S. Jeong, H. Michelsen, R. P. Bambha, Z. Liu, G. W. Santoni, B. Duabe, E. Kort, G. Frost, T. B. Ryerson, S. C. Wofsy, M. Trainer (2017). Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The San Joaquin Valley, J. Geophys. Res. Atmos., 122, 3686--3699, doi:10.1002/2016JD026398, online.
 +
**Cooper, M., R. V. Martin, A. Padmanabhan, and D. K. Henze (2017), Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions, J. Geophys. Res. Atmos., 122, 4718-4734, doi:10.1002/2016JD025985 online.
  
* '''In press or sumbitted'''
 
**Turner, A. J., D. J. Jacob, K. J. Wecht, J. D. Maasakkers, S. C. Biraud, H. Boesch, K. W. Bowman, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V. H. Payne, R. Sussmann, V. A. Velazco, T. Warneke, P. O. Wennberg, and D. Wunch, Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data, submitted to Atmos. Chem. Phys.
 
**Turner, A. J. and D. J. Jacob, Balancing aggregation and smoothing errors in inverse models, submitted to Atmos. Chem. Phys.
 
**Liu, J., Bowman, K., and Henze, D., Source-receptor relationships of column-average CO2 and implications for the impact of observations on flux inversions. JGR-Atmosphere, in press.
 
**Whaley, C. H., K. Strong, D. B. A. Jones, T. W. Walker, Z. Jiang, D. K. Henze, M. Cooke, C. A. McLinden, M. Pommier, R. L. Mittermeier, P. F. Fogal, Improvements to our understanding of urban ozone air pollution: Sources of Toronto-area ozone during poor air quality events, submitted.
 
**Zhao, Y. H., L. Zhang, Y. P. Pan, Y. S. Wang, F. Paulot, and D. K. Henze, Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution, submitted.
 
**Lapina, K., D. K. Henze, J. B. Milford, C. Cuvelier, and M. Seltzer, Implications of RCP Scenarios for future changes in vegetative exposure to ozone in the Western U.S., Geophys. Res. Let., in press.
 
**Zhang, L., L. Licheng, Y. Zhao, S. Gong, X. Zhang, D. K. Henze, S. L. Capps, T.-M. Fu, Q. Zhang, Source attribution of particulate matter pollution over North China with the adjoint method, submitted.
 
**Walker, T. W., D. B. A. Jones, D. K. Henze, Z. Jiang, M. Parrington, F. Paulot, and Y. Rochon, Adjoint sensitivity analysis of North American surface ozone concentrations: Implications for dry deposition, submitted.
 
**Keller, M, D. B. A. Jones, Z. Jiang, D. K. Henze, and H. Worden, Quantifying model biases in CO emission estimation using weak constraint 4D-Var, submitted.
 
**Bousserez, N., D. K. Henze, B. Rooney, A. Perkins, K. J. Wecht, A. J. Turner, V. Natraj, J. R. Worden, Constraints on methane emissions in North America from future geostationary remote sensing measurements, submitted.
 
  
 
* '''2016'''
 
* '''2016'''
 +
**Wang, Y., J. Wang, X. Xu, D. K. Henze, Y. Wang, Z. Qu (2016), A new approach for monthly updates of anthropogenic sulfur dioxide emissions from space: implications for air quality forecasts, Geophys. Res. Lett., 43, 9931–9938.
 +
**Lee, H.-M., F. Paulot, D. K. Henze, K. Travis, D. J. Jacob, L. H. Pardo, B. Schichtel (2016), Sources of nitrogen deposition in Federal Class I areas in the US, Atmos. Chem. Phys, 16, 525-540, doi:10.5194/acp-16-1-2016
 +
**Zhang, L., J. Shao, X. Lu, Y. Zhao, Y. Hu, D. K. Henze, H. Liao, S. Gong, Q. Zhang (2016), Sources and processes affecting fine particulate matter pollution over North China: an adjoint analysis of the Beijing APEC period, Environ. Sci. Technol., 50 (16), 8731-8740, doi:10.1021/acs.est.6b03010
 +
**Bousserez, N., D. K. Henze, B. Rooney, A. Perkins, K. J. Wecht, A. J. Turner, V. Natraj, J. R. Worden, Constraints on methane emissions in North America from future geostationary remote sensing measurements, Atmos. Chem. Phys., 16, 6175-6190, 2016, https://doi.org/10.5194/acp-16-6175-2016
 
**Tan, Z., Q. Zhuang, D. K. Henze, C. Frankenberg, E. Dlugokencky, C. Sweeney, A. J. Turner, M. Sasakawa, T. Machida, Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?, Atmos. Chem. Phys., 16, 12649–12666, doi:10.5194/acp-16-12649-2016.
 
**Tan, Z., Q. Zhuang, D. K. Henze, C. Frankenberg, E. Dlugokencky, C. Sweeney, A. J. Turner, M. Sasakawa, T. Machida, Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?, Atmos. Chem. Phys., 16, 12649–12666, doi:10.5194/acp-16-12649-2016.
  
 
* '''2015'''
 
* '''2015'''
 +
**Zhang, L., L. Licheng, Y. Zhao, S. Gong, X. Zhang, D. K. Henze, S. L. Capps, T.-M. Fu, Q. Zhang, Source attribution of particulate matter pollution over North China with the adjoint method, Environ. Res. Lett. 10 084011.
 +
**Zhao, Y. H., L. Zhang, Y. P. Pan, Y. S. Wang, F. Paulot, and D. K. Henze, Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution, submitted.
 +
**Lapina, K., D. K. Henze, J. B. Milford, C. Cuvelier, and M. Seltzer, Implications of RCP Scenarios for future changes in vegetative exposure to ozone in the Western U.S., Geophys. Res. Let., Atmos. Chem. Phys., 15, 10905-10924, 2015, https://doi.org/10.5194/acp-15-10905-2015
 +
**Whaley, C. H., K. Strong, D. B. A. Jones, T. W. Walker, Z. Jiang, D. K. Henze, M. Cooke, C. A. McLinden, M. Pommier, R. L. Mittermeier, P. F. Fogal, Improvements to our understanding of urban ozone air pollution: Sources of Toronto-area ozone during poor air quality events, J. Geophys. Res. Atmos., 120, 11,368–11,390, doi:10.1002/2014JD022984.
 +
**Liu, J., Bowman, K., and Henze, D., Source-receptor relationships of column-average CO2 and implications for the impact of observations on flux inversions., J. Geophys. Res. Atmos., 120,5214–5236, doi:10.1002/2014JD022914
 +
**Turner, A. J. and D. J. Jacob, Balancing aggregation and smoothing errors in inverse models, Atmos. Chem. Phys., 15, 7039-7048, 2015, https://doi.org/10.5194/acp-15-7039-2015
 +
**Turner, A. J., D. J. Jacob, K. J. Wecht, J. D. Maasakkers, S. C. Biraud, H. Boesch, K. W. Bowman, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V. H. Payne, R. Sussmann, V. A. Velazco, T. Warneke, P. O. Wennberg, and D. Wunch, Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data, Atmos. Chem. Phys., 15, 7049-7069, 2015,https://doi.org/10.5194/acp-15-7049-2015
 
**Zhang, L., D. K. Henze, G. A. Grell, G. R. Carmichael, N. Bousserez, Q. Zhang, J. Cao, O. Torres, C. Ahn, Z. Lu, Y. Mao, Constraining black carbon aerosol over Southeast Asia using OMI aerosol absorption optical depth and the adjoint of GEOS-Chem, Atmos. Chem. Phys., 15, 10281-10308, doi:10.5194/acp-15-10281-2015.
 
**Zhang, L., D. K. Henze, G. A. Grell, G. R. Carmichael, N. Bousserez, Q. Zhang, J. Cao, O. Torres, C. Ahn, Z. Lu, Y. Mao, Constraining black carbon aerosol over Southeast Asia using OMI aerosol absorption optical depth and the adjoint of GEOS-Chem, Atmos. Chem. Phys., 15, 10281-10308, doi:10.5194/acp-15-10281-2015.
 
**Patrick S. Kim, Daniel J. Jacob, Loretta J. Mickley, Shannon N. Koplitz, Miriam E. Marlier, Ruth S. DeFries, Samuel S. Myers, Boon Ning Chewf, Yuhao H. Mao, Sensitivity of population smoke exposure to fire locations in Equatorial Asia, doi:10.1016/j.atmosenv.2014.09.045
 
**Patrick S. Kim, Daniel J. Jacob, Loretta J. Mickley, Shannon N. Koplitz, Miriam E. Marlier, Ruth S. DeFries, Samuel S. Myers, Boon Ning Chewf, Yuhao H. Mao, Sensitivity of population smoke exposure to fire locations in Equatorial Asia, doi:10.1016/j.atmosenv.2014.09.045
Line 557: Line 677:
  
 
* '''2013'''
 
* '''2013'''
 +
**Walker, T. W., D. B. A. Jones, D. K. Henze, Z. Jiang, M. Parrington, F. Paulot, and Y. Rochon, Adjoint sensitivity analysis of North American surface ozone concentrations: Implications for dry deposition, American Geophysical Union, Fall Meeting 2013, abstract id. A33L-03.
 
**Deng, F., D. B. A. Jones, D. K. Henze, N. Bousserez, K. W. Bowman, J. B. Fisher, R. Nassar, C. O'Dell, D. Wunch, P. O. Wennberg, E. A. Kort, S. C. Wofsy, T. Blumenstock, N. M. Deutscher, D. Griffith, F. Hase, P. Heikkinen, V. Sherlock, K. Strong, R. Sussmann, and T. Warneke, Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data, Atmos. Chem. Phys. Discuss., 13, 26327-26388
 
**Deng, F., D. B. A. Jones, D. K. Henze, N. Bousserez, K. W. Bowman, J. B. Fisher, R. Nassar, C. O'Dell, D. Wunch, P. O. Wennberg, E. A. Kort, S. C. Wofsy, T. Blumenstock, N. M. Deutscher, D. Griffith, F. Hase, P. Heikkinen, V. Sherlock, K. Strong, R. Sussmann, and T. Warneke, Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data, Atmos. Chem. Phys. Discuss., 13, 26327-26388
 
**Meland, B., X. Xu, D. K. Henze, J. Wang, Assessing remote polarimetric measurements sensitivities to aerosol emissions using the GEOS-Chem adjoint model, Atmos. Meas. Tech. Discuss., 6, 5447-5493, doi:10.5194/amtd-6-5447-2013
 
**Meland, B., X. Xu, D. K. Henze, J. Wang, Assessing remote polarimetric measurements sensitivities to aerosol emissions using the GEOS-Chem adjoint model, Atmos. Meas. Tech. Discuss., 6, 5447-5493, doi:10.5194/amtd-6-5447-2013
**Xu, X., J. Wang, D. K. Henze, W. Qu, M. Kopacz, Constraints on Aerosol Sources Using GEOS-Chem Adjoint and MODIS Radiances, and Evaluation with Multi-sensor (OMI, MISR) data,  J. Geophys. Res., 118, doi:10.1002/jgrd.50515.
+
**Xu, X., J. Wang, D. K. Henze, W. Qu, M. Kopacz (2013), Constraints on Aerosol Sources Using GEOS-Chem Adjoint and MODIS Radiances, and Evaluation with Multi-sensor (OMI, MISR) data,  J. Geophys. Res., 118, doi:10.1002/jgrd.50515.
 
**Paulot, F., D. J. Jacob and D. K. Henze, Sources and processes contributing to nitrogen deposition in biodiversity hotspots worldwide, Environ. Sci. Technol, 47, 3226-3233, doi:10.1021/es3027727.
 
**Paulot, F., D. J. Jacob and D. K. Henze, Sources and processes contributing to nitrogen deposition in biodiversity hotspots worldwide, Environ. Sci. Technol, 47, 3226-3233, doi:10.1021/es3027727.
 
**Koo, J., Q. Wang, D. K. Henze, I. A. Waitz, S.R.H. Barrett, Spatial sensitivities of human health risk to intercontinental and high-altitude pollution, Atmos. Environ., 71, 140-147.
 
**Koo, J., Q. Wang, D. K. Henze, I. A. Waitz, S.R.H. Barrett, Spatial sensitivities of human health risk to intercontinental and high-altitude pollution, Atmos. Environ., 71, 140-147.
Line 576: Line 697:
 
**Turner, A., D. K. Henze, R. V. Martin, and A. Hakami, The spatial extent of source influences on modeled column concentrations of short-lived species, Geophys. Res. Lett., 39, L12806, doi:10.1029/2012GL051832.
 
**Turner, A., D. K. Henze, R. V. Martin, and A. Hakami, The spatial extent of source influences on modeled column concentrations of short-lived species, Geophys. Res. Lett., 39, L12806, doi:10.1029/2012GL051832.
 
**Walker, T., D. B. A. Jones, M. Parrington, D. K. Henze, L. T. Murray, J. W. Bottenheim, K. Anlauf, J. R. Worden, K. W. Bowman, C. Shim, K. Singh, M. Kopacz, D. W. Tarasick, J. Davies, P. von der Gathen, and C. C. Carouge, Impacts of midlatitude precursor emissions and local photochemistry on ozone abundances in the Arctic, J. Geophys. Res.,117, D01305 doi:10.1029/2011JD016370.
 
**Walker, T., D. B. A. Jones, M. Parrington, D. K. Henze, L. T. Murray, J. W. Bottenheim, K. Anlauf, J. R. Worden, K. W. Bowman, C. Shim, K. Singh, M. Kopacz, D. W. Tarasick, J. Davies, P. von der Gathen, and C. C. Carouge, Impacts of midlatitude precursor emissions and local photochemistry on ozone abundances in the Arctic, J. Geophys. Res.,117, D01305 doi:10.1029/2011JD016370.
**Wang, J., X. Xu, D. K. Henze, Q. Ji, S.-C. Tsay, J. Huang, Top-Down Estimate of Dust Emissions through Integration of MODIS and MISR Aerosol Retrievals with the GEOS-Chem adjoint model, Geophys. Res. Lett., 39, L08802.
+
**Wang, J., X. Xu, D. K. Henze, Q. Ji, S.-C. Tsay (2012), J. Huang, Top-Down Estimate of Dust Emissions through Integration of MODIS and MISR Aerosol Retrievals with the GEOS-Chem adjoint model, Geophys. Res. Lett., 39, L08802.
 
**Wecht, K. J., D. J. Jacob, S. C. Wofsy, E. A. Kort, J. R. Worden, S. S. Kulawik, D. K. Henze, M. Kopacz, and V. H. Payne, Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources, Atmos. Chem. Phys., 12, 1823-1832.
 
**Wecht, K. J., D. J. Jacob, S. C. Wofsy, E. A. Kort, J. R. Worden, S. S. Kulawik, D. K. Henze, M. Kopacz, and V. H. Payne, Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources, Atmos. Chem. Phys., 12, 1823-1832.
 
**Singh, K. and A. Sandu (2012). "Variational chemical data assimilation with approximate adjoints." Computers and Geosciences 40: 10-18.
 
**Singh, K. and A. Sandu (2012). "Variational chemical data assimilation with approximate adjoints." Computers and Geosciences 40: 10-18.

Revision as of 15:47, 10 February 2023

Adjoint Model and Data Assimilation Working Group

Contact information

Adjoint Model Scientist Daven Henze
Adjoint Model and Data Assimilation
Working Group Co-Chairs
GEOS-Chem Adjoint support team
Adjoint Working Group email list geos-chem-adjoint [at] g.harvard.edu
To subscribe to email list Either
  • Send an email to geos-chem-adjoint+subscribe [at] g.harvard.edu

Or

To unsubscribe from email list Either
  • Send an email to geos-chem-adjoint+unsubscribe [at] g.harvard.edu

Or

--Bob Y. (talk) 15:54, 21 August 2015 (UTC)

Historical Development

Original work on the adjoint of GEOS-Chem v6 began in 2003, focusing on the adjoint of the offline aerosol simulation. By 2005, the adjoint was expanded to include a tagged CO simulation and a full chemistry simulation; an adjoint of GEOS-Chem v7 was also developed in the following years. Each of these branches of the adjoint code were been constructed in a hybrid fashion using a combination of automatic differentiation software (TAMC, KPP) and manual coding of both discrete and continuous adjoints. They shared many common elements yet had unique features for different applications.

During the summer of 2009, the existing branches were merged and updated to bring the adjoint into alignment with the latest release of GEOS-Chem, v8-02-01. This merged adjoint model is now the standard adjoint code into which all further development efforts will be placed.

Forward Model Code

The forward model on which the adjoint is based originally corresponded to GEOS-Chem v8-02-01. It was subsequently updated as follows:

  • KPP solver for gas-phase chemistry (as in GCv8-02-03)
  • Implement Bond 2007 BC/OC emissions (as in GCv8-02-02)
  • Apply bug fixes from GCv8-02-02 listed here
  • Apply bug fixes from GCv8-02-03 listed here
  • Apply bug fixes from GCv8-02-04 listed here

All bug fixes and model updates were previous listed at the top of inverse_driver.f. Since then the code has been kept up to date with bug fixes and some forward model updates in v9 and v10. We have now switched to documenting the code development cycle here in the wiki, see the following section.

Code Versions, Bug Fixes and Developments

Current GEOS-Chem adjoint version released

Previous GEOS-Chem adjoint versions released

Summary of Main Adjoint Code Supported Features

Features

  • Meteorological fields
    • GEOS-3 needs testing
    • GEOS-4
    • GEOS-5
    • GEOS-FP
    • MERRA and MERRA2 in progress
  • model resolution
    • 4 x 5
    • 2 x 2.5
    • 0.5 x 0.666
    • 0.25 x 0.3125
    • Nested China and North America
    • Small Domain China and North America
  • Forward model processes
    • convection
    • advection
    • PBL mixing
    • dry deposition
    • wet deposition
    • strat / trop exchange with LINOZ and new GMI strat chem (v9-01-03)
    • NOy up fluxes (now replaced with new GMI strat chem)
    • aerosols
      • inorganic aerosol thermodynamics with RPMARES
      • inorganic aerosol thermodynamics with ISORROPIA in progress
      • sulfate chemistry
      • BC
      • SOA, Dust, sea salt needs doing
      • aerosol surface area feedbacks needs updating
      • aerosol optical feedbacks needs doing
    • emissions
      • all standard emissions included
  • Simulation modes
    • full chemistry
    • tagged CO
    • tagged Ox
    • CH4
    • offline aerosols (for BC and dust only)
    • CO2
  • Observational Operators
    • MOPITT CO column
    • SCIAMACHY CO column
    • AIRS CO column
    • IMPROVE BC
    • CASTNet (NH4+) needs updating
    • GOME / SCIAMACHY NO2 column needs updating
      • using KNMI retrieval (Henze)
      • using Dalhousie retrieval (Shim)
    • SCIAMACHY/OMI NO2
      • using Dalhousie retrieval (Bousserez, Padmanabhan)
    • TES NH3
    • TES O3
    • GOSAT CO2
    • MLS O3 and TES CO2 in progress
  • Control parameters
    • Initial Conditions scaling factors (linear or log)
    • Emissions scaling factors (linear or log)
      • NH3, primary BC/OC, SO2: anthropogenic, natural, bioburn, biomass, ship
      • NOx: soil, aircraft, anthropogenic, biofuel, bioburn
      • Lightning NOx: injection height, yield in progress
      • all other gas-phase tracers: anthropogenic, biofuel, bioburn
  • Adjoint sensitivities
    • w.r.t. all implemented control parameters
    • w.r.t Reaction Rate Parameters
    • w.r.t all emissions
    • of AQ attainment metrics needs updating
    • of spatiotemporally averaged species concentrations (e.g., arctic O3)
  • Other
    • Inverse Hessian approximation
    • off-diagonal covariance matrices needs updating
    • 3D-Var needs updating

Features may be qualified as:

  • needs testing: an implemented feature that we haven't fully used yet
  • needs updating: a feature developed with a previous branch that has yet to be updated to GEOS-Chem v8 and the merged adjoint
  • needs doing: a feature nobody has tackled the adjoint of yet
  • in progress: a feature currently under development
  • in pipeline: a feature which has been submitted and awaiting integration into the CVS repository

Primary code developers

Monika Kopacz, Kumaresh Singh, Changsub Shim, Daven Henze

Adjoint model lead scientist

Daven Henze


Resources

User's guide

A User's Guide v36 is available. User's Guide v36

Manuals for previous versions are available here

Quick Introduction to GitLab is available at GitLab Tutorial

The forward version of the code is based on v9-02 here is the User's Guide

Code flowchart

Meemong Lee has created a detailed flowchart of the inverse model code structure. flowchart.pdf

Plotting tools

Some IDL and MATLAB routines for plotting benchmark results. tools.tar.gz

Background papers and presentations

Several articles and presentations (including a GC adjoint modeling clinic overview from IGC5) providing background information about adjoints. adj_articles.tar.gz

Distribution and Use

Code for the adjoint is distributed through GITLAB, a web interface connected to a GIT server located at adjoint.colorado.edu. You can access GITLAB at https://adjoint.colorado.edu:8080 after your account is created. Here is our Quick Start Guide.

Even if your office mate has a copy of the code, the best way to obtain the model is to get an account for yourself and download a version from the repository. So please do not copy code directly from others or pass the code along to third parties. This vastly helps with tracking developments and keeping up with model updates.

Use of the adjoint model code follows standard practice for GEOS-Chem. It is expected that any developments that come of individual applications based on this community model will eventually be given back to the community by incorporation of new developments into the standard adjoint code. New development should be submitted to Daven Henze for inclusion in the standard adjoint model code.

Using GIT gives the users the ability to change the code and commit their changes without affecting the main repository hosted at adjoint.colorado.edu. Users can work with their modified versions of the code and even create their own tags because GIT acts as a local repository. When ready to submit your update to the community just create a new branch with your modifications. Send an email Daven Henze explaining your contributions and we'll do our best to include them as soon as possible.

Quick guide to GIT

As of version 34 we started using git versioning system and the GitLab web interface. We prepared GitLab Tutorial to help users get used to the web interface and git. We recommend first taking a look at GIT manual to get a general feel for how this tools works (e.g., GIT Documentation or GIT Manual Page).


Useful GIT commands:

Initial download:

git clone ssh://git@adjoint.colorado.edu/yanko.davila/gcadj_std.git

Status of project vs the current repository:

git status

Check difference of files (differences have colors for easy reading)

git diff --color <wildcard> [<wildcard>] <path>/foo_mod.f

Checkout specific version

git checkout <wildcard>

Replacing a file with the newest version from the repository:

git checkout origin/master -- <path>/foo_mod.f

Merging changes in a file: (Reference)

git merge -m <wildcard> 

Comitting

git commit -a

Tagging a version

git tag -a TAGNAME

Deleting a tag

git tag -d TAGNAME
git push origin :refs/tags/TAGNAME

Saving changes to repository

git push

Saving tags to repository

git push --tags

List the history of a file:

git log -- <path>/foo_mod.f

Add a file to the repository

git add <file_name>

Delete a file from the repository

git rm <file_name>

Determine current version

git show HEAD [ | grep commit]

Download remote changes, rewind your local branch, then replays all your changes over the top of your current branch one by one, until you’re all up to date.

git pull --rebase

There are several wildcards that you can use on git for example:
"origin/master" - Latest version on the repository
"HEAD" - Latest version as of your last download
"v33i" - Specific TAG, find all tag names on GitLab
"32d5c926e" - Specific COMMIT, find all commit numbers on GitLab

Here is the foward model documentation of git.

Backward compatibility (CVS)

For people using old version of the code we still have active our CVS repository, but note that the latest version on CVS is v33i-patch2. Here you can find our Quick Guide to CVS

Crediting GEOS-Chem adjoint developers

We aim to make distribution of adjoint model code as immediate as possible. A consequence is that many features may not yet be publicly documented. Therefore, giving code developers due credit is of utmost importance.

Authors of new additions to the standard code should be offered co-authorship on the first round of presentations and publications to come of their development. Features currently falling in this category and their developers are:

  • (v36) UCX Thibaud Fritz, Irene Dedoussi, MIT, TU Delft
  • (v35j) MOPITT CO Observation operator. Zhe Jiang; Yanko Davila, CU Boulder.
  • (v35j) OMI SO2, OMI NO2 and TES O3 Observation operators. Martin Keller, U Toronto; Yi Wang, U-Iowa; Yanko Davila, CU Boulder.
  • (v35j) MODIS radiance observation operators, Xiaoguang Xu and Jun Wang, U-Iowa.
  • (v35) HTAP Emissions Inventory. Kateryna Lapina, Daven Henze and Yanko Davila, CU Boulder.
  • (v35) NEI2008 Emissions Inventory. Katie Travis; Fabien Paulot, Harvard; Hyungmin Lee, and Daven Henze, CU Boulder.
  • (v35) Deposition based cost function. Fabien Paulot, Harvard; Daven Henze and Yanko Davila, CU Boulder.
  • (v34) Implementation of the sensitivity to reaction rate constants. Developers: Hyungmin Lee, CU Boulder; Thomas ; Fabien Paulot (Harvard); Daven Henze, CU Boulder and Yanko Davila, CU Boulder.
  • (v34) ISOROPIA II adjoint. Developer: Shannon Capps, EPA.
  • (v34) Off-diagonal covariance error matrices implementation. Developers: Nicolas Bousserez, CU Boulder; Kumaresh; Yanko Davila, CU Boulder.
  • (v32) Nested full chemistry adjoint. Developers: Zhe Jiang, University of Toronto; Daven Henze, CU Boulder.


Citation of the appropriate journal articles for mature developments is also encouraged, as well as considering aspects of co-authorship for the forward model.

Overall, if you have any questions about authorship, even for a conference presentation, please contact Daven Henze.


GCHP adjoint

As of GEOS-Chem v13.1.0, the GCHP model has included the adjoint modeling framework. Currently this supports the offline CO2 simulation. The simulation so far only treats the adjoint of advection. The simulation capabilities include sensitivities with respect to initial conditions and emissions, and a global finite difference testing framework for the initial condition sensitivities. More about using GCHP adjoint can be found in the user guide [here].

Publications

Journal Articles

  • 2022/submitted/in press
    • Sokharavuth, P., S. Thiv, C. Nara, C. Him, S. Sokyimeng, D. K. Henze, R Holmes, J. C.I. Kuylenstierna, C. S. Malley, E. Michalopoulou, J. Slater, Air pollution mitigation assessment to inform Cambodia’s first Clean Air Plan, submitted.
    • Fritz, T. M., I. C. Dedoussi, S. D. Eastham, R. L. Speth, D. K. Henze, S. R. H. Barrett, Identifying the ozone-neutral aircraft cruise altitude, Atmos. Environ., 276, 1, 119057, https://doi.org/10.1016/j.atmosenv.2022.119057.
    • Qu, Z, D. K. Henze, H. M. Worden, Zhe Jiang, B. Gaubert, N. Theys, W. Wang (2022), Sector-based top-down estimates of NOx, SO2, and CO emissions in East Asia, Geophys. Res. Let., 49, e2021GL096009, https://doi.org/10.1029/2021GL096009.
    • Choi, J., D. K. Henze, H. Cao, C. R. Nowlan, G. González Abad, H.-A. Kwon, H.-M. Lee, Y. J. Oak, R. J. Park, K. H. Bates, J. D. Maasakkers, A. Wisthaler, A. J. Weinheimer (2022), An inversion framework for optimizing non-methane VOC emissions using remote sensing and airborne observations in Northeast Asia during the KORUS-AQ field campaign, J. Geophys. Res., 127, e2021JD035844, https://doi.org/10.1029/2021JD035844.
    • Cao, H., D. K. Henze, L. Zhu, M. W. Shephard, K. Cady-Pereira, E. Dammers, M. Sitewell, M. Al- varado, C. Lonsdale, J. Bash, K. Miyazaki, C. Flechard, Y. Fauvel, R. W. Kruit, S. Feigenspan, C. Brümmer, F. Schrader, M. M. Twigg, Y. S. Tang, A. C. M. Stephens, K. Vincent, M. Meier, E. Seitler, C. Geels, T. Ellermann, S. L. Capps (2022), 4D-Var inversion of European NH3 emissions using CrIS NH3 measurements and GEOS-Chem adjoint with bi-directional and uni-directional flux schemes, J. Geo- phys. Res., 127, e2021JD035687, https://doi.org/10.1029/2021JD035687.
  • 2021
    • Nawaz, M. O., D. K. Henze, C. Harkins, H. Cao, B. Nault, D. Jo, J. Jimenez, S.C. Anenberg, D.L. Goldberg, Z. Qu (2021), Impacts of sectoral, regional, species, and day-specific emissions on air pollution and public health in Washington DC, Elementa, 9 (1),, 00043, https://doi.org/10.1525/elementa.2021.00043.
    • Yu, X., D. B. Millet, and D. K. Henze (2021), How well can inverse analyses of high-resolution satellite data resolve heterogenous methane fluxes? Geosci. Model Dev., 14, 7775–7793, https://doi.org/10.5194/ gmd-14-7775-2021.
    • Malley, C. S., W. K. Hicks, J. C. I. Kulyenstierna, E. Michalopoulou, A. Molotoks, J. Slater, C. G Heaps, S. Ulloa, J. Veysey, D. T. Shindell, D. K. Henze, O. Nawaz, S. C. Anenberg, B. Mantlana, T. P. Robinson (2021), Integrated assessment of global climate, air pollution, and dietary, malnutrition and obesity health impacts of food production and consumption between 2014 and 2018, Environ. Res. Commun., 3, 075001, https://doi.org/10.1088/2515-7620/ac0af9.
    • Stanevich, I., D. B. A. Jones, K. Strong, M. Keller, D. K. Henze, R. J. Parker, H. Boesch, D. Wunch, J. Notholt, C. Petri, T. Warneke, R. Sussmann, M. Schneider, F. Hase, R. Kivi, N. M. Deutscher, V. A. Ve- lazco, K. A. Walker, F. Deng, Characterizing model errors in chemical transport modelling of methane: Using GOSAT XCH4 data with weak constraint four-dimensional variational data assimilation, Atmos. Chem. Phys., 21, 9545–9572, https://doi.org/10.5194/acp-21-9545-2021.
    • Yu, X., D. B. Millet, K. C. Wells, D. K. Henze, H. Cao, T. J. Griffis, E. A. Kort, G. Plant, M. J. Deventer, R. K. Kolka, D. T. Roman, K. J. Davis, A. R. Desai, B. C. Baier, K. McKain, A. C. Czarnetzki, A. A. Bloom (2021), Aircraft-based inversions quantify the importance of wetlands and livestock for Upper Midwest methane emissions, Atmos. Chem. Phys., 21, 951–971, https://doi.org/10.5194/acp-21-951-2021.
    • Qu, Z., D. Wu, D. K. Henze, Y. Li, M. Sonenberg, F. Mao (2021), Transboundary transport of ozone pollution to a US border region: a case study of Yuma, Environ. Pollut., 273, 116421, https://doi.org/10.1016/j.env pol.2020.116421.
    • Wang, X., T.-M. Fu, L. Zhang, H. Cao, Q. Zhang, H. Ma, L. Shen, M. Evans, P. Ivatt, X. Lu, Y. Chen, X. Yang, L. Zhu, D. K. Henze (2021), Sensitivities of ozone air pollution in the Beijing-Tianjin-Hebei area to local and upwind precursor emissions using adjoint modeling, Environ. Sci. Technol., 55, 9, 5752?5762, https://doi.org/10.1021/acs.est.1c00131.
    • Chen, Z., J. Liu, D. K. Henze, D. N. Huntzinger, K. C. Wells, S. Sitch, P. Friedlingstein, E. Joet- zjer, V. Bastrikov, D. S. Goll, V. Haverd, A. K. Jain, E. Kato, S. Lienert, D. L. Lombardozzi, P.C. McGuire, J. R. Melton, J. E. M. S. Nabel, B. Poulter, H. Tian, A. J. Wiltshire, S. Zaehle, S. M. Miller (2021), Linking global terrestrial CO2 fluxes and environmental drivers: inferences from the Orbiting Car- bon Observatory 2 satellite and terrestrial biospheric models, Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021.
  • 2020
    • Qu, Z, D. K. Henze, O. R. Cooper, and J. L. Neu, Impacts of global NOx inversions on NO2 and ozone simulations, Atmos. Chem. Phys., 20, 13109–13130, https://doi.org/10.5194/acp-20-13109-2020.
    • Cao, H., D. K. Henze, M. W. Shephard, E. Dammers, K. Cady-Pereira, M. Alvarado, C. Lonsdale, G. Luo, F. Yu, L. Zhu, C. G. Danielson, E. S. Edgerton, Inverse modeling of NH3 sources using CrIS remote sensing measurements, Environ. Res. Lett., 15, 104082.
    • Elguindi, N., C. Granier, T. Stavrakou, S. Darras, M. Bauwens, H. Cao, C. Chen, H.A.C. Denier van der Gon, O. Dubovik, T. M. Fu, D. K. Henze, Z. Jiang, J. J. P. Kuenen, J. Kurokawa, C. Liousse, K. Miyazaki, J.-F. Müller, Z. Qu, K. Sekou, F. Solmon, B. Zheng, Intercomparison of magnitudes and trends in anthropogenic surface emissions from bottom-up inventories, top-down estimates, and emission scenarios, Earth’s Future, 8 (8), https://doi.org/10.1029/2020EF001520.
    • Kuylenstierna, J. C. I., C. G. Heaps, T. Ahmed, H. W. Vallack, W. K. Hicks, M. R. Ashmore, C. S. Malley, G. Wang, E. N. Lefevre, S. C. Anenberg, F. Lacey, D. T. Shindell, U. Bhattacharjee, D. K. Henze, Development of the Low Emissions Analysis Platform – Integrated Benefits Calculator (LEAP-IBC) tool to assess air quality and climate co-benefits: Application for Bangladesh, Environ. Int., 145, 106155, https://doi.org/10.1016/j.envint.2020.106155.
    • Mao, Y. H., X. C. Zhao, H. Liao, D. K. Henze, H. Cao, L. Zhang, J. Li, L. Ran, Q. Zhang, J. D. Li, Sources of black carbon during severe haze events in the Beijing-Tianjin-Hebei region using the adjoint method, Sci. Tot. Environ., 740 (20), 140149, https://doi.org/10.1016/j.scitotenv.2020.140149.
    • Nawaz, M. O., and D. K. Henze, Premature deaths in Brazil associated with long-term exposure to PM2.5 from Amazon fires between 2016-2019, Geo Health, 4, e2020GH000268, https://doi.org/10.1029 /2020GH000268.
    • Wang, Y., J. Wang, X. Xu, D. K. Henze, Z. Qu, Inverse modeling of SO2 and NOx emissions over China using multi-sensor satellite data: 1. formulation and sensitivity analysis, Atmos. Chem. Phys., 20, 6631–6650, https://doi.org/10.5194/acp-20-6631-2020.
  • 2019
    • Chen, C., O. Dubovik, D. K. Henze, M. Chin, T. Lapyonak, G. L. Schuster, F. Ducos, D. Fuertes, P. Litvinov, L. Li, A. Lopatin, Q. Hu, B. Torres (2019), Constraining global aerosol emissions using POLDER/ PARASOL satellite remote sensing observations, Atmos. Chem. Phys., 19, 14585–14606, https://doi.org/10.5194/acp-19-14585-2019.
    • Zhao, H., Q. Zhang, S. J. Davis, X. Li, Y. Liu, G. Geng, M. Li, B. Zheng, H. Huo, L. Zhang, D. K. Henze, K. He (2019), Inequality of household consumption and air pollution deaths in China, Nature Com., 10, 10, 4337, https://doi.org/10.1038/s41467-019-12254-x.
    • Philip, S., M. S. Johnson, C. Potter, V. Genovesse, D. F. Baker, K. D. Haynes, D. K. Henze, J. Liu, B. Poulter (2019), Prior biosphere model impact on global terrestrial CO2 fluxes estimated, Atmos. Chem. Phys., 19, 13267–13287, https://doi.org/10.5194/acp-19-13267-2019.
    • Yi, K., J. Meng, H. Yang, C. He, D. K. Henze, J. Liu, D. Guan, Z. Liu, L. Zhang, X. Zhu, Y. Cheng, S. Tao (2019), The cascade of global trade to large climate forcing over the Tibetan Plateau glaciers, Nature Com., 10, 3281, https://doi.org/10.1038/s41467-019-10876-9.
    • Zhang, X., D. B. A. Jones, M. Keller, T. W. Walker, Z. Jiang, D. K. Henze, H. M. Worden, A. E. Bourassa, D.A. Degenstein, Y. J. Rochon, S. Wofsy (2019), Quantifying emissions of CO and NOx using observations from MOPITT, OMI, TES, and OSIRIS, J. Geophys. Res., 124, 1170–1193, https://doi.org/10.1029/2018JD028670.
    • Qu, Z., D. K. Henze, N. Theys, J. Wang, W. Wang (2019), Hybrid mass balance / 4D-Var joint inversion of NOx and SO2 emissions in East Asia, J. Geophys. Res., 124, 8203–8224, https://doi.org/10.1029/2018JD030240.
    • Qu, Z., D. K. Henze, C. Li, N. Theys, Y. Wang, J. Wang, W. Wang, J. Han, C. Shim, R. R. Dickerson, X. Ren (2019), SO2 emissions estimated using OMI SO2 retrievals (2005-2017), J. Geophys. Res., 124, 8336–8359, https://doi.org/10.1029/2019JD030243.
    • Li, C., R. V. Martin, M. W. Shephard, M. J. Cooper, J. Kaiser, C. J. Lee, L. Zhang, D. K. Henze (2019), Assessing the iterative finite difference mass balance and 4D-Var methods to retrieve ammonia emissions over North America using synthetic Cross-track Infrared Sounder Observations, J. Geophys. Res., 124, 4222–4236. https://doi.org/10.1029/2018JD030183.
    • Choi, J., R. J. Park, H.-M. Lee, S. Lee, D. S. Jo, J. I. Jeong, D. K. Henze, J.-H. Woo, S.-J. Ban, M.-D. Lee, C.-S. Lim, M.-K. Park, H. J. Shin, S. Cho, D. Peterson, C.-K. Song (2019), Impacts of local vs. trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign, Atmos. Environ., 203, 196–205, https://doi.org/10.1016/j.atmosenv.2019.02.008.
  • 2018
    • Jiang, Z., B. C. McDonald, H. Worden, J. R. Worden, K. Miyazaki, Z. Qu, D. K. Henze, D. B. A. Jones, A. F. Arellano, E. V. Fischer, L. Zhu, K. F. Boersma (2018), Unexpected slowdown of US pollutant emission reduction in the past decade, Proc. Nat. Acad. Soc., 115(20), 5099--5104, doi:10.1073/pnas.1801191115.
    • Chen, C., O. Dubovik, D. K. Henze, T. Lapyonak, M. Chin, F. Ducos, P. Litvinov, X. Huang, L. Li (2018), Retrieval of desert dust and carbonaceous aerosol emissions over Africa from PARASOL/GRASP observations, Atmos. Chem. Phys., 18, 12551-12580, https://doi.org/10.5194/acp-18-12551-2018.
    • Cao, H., T.-M. Fu, L. Zhang, D. K. Henze, C. Chan Miller, C. Lerot, G. González Abad, I. De Smedt, Q. Zhang, M. van Roozendael, K. Chance, J. Li, J. Y. Zheng, Y. H. Zhao (2018), Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal, Atmos. Chem. Phys., 18, 15017-15046, https://doi.org/10.5194/acp-18-15017-2018.
    • Wells, K. C., D. B. Millet, N. Bousserez, D. K. Henze, T. J. Griffis, S. Chaliyakunnel, E. J. Dlugokencky, E. Saikawa, G. Xiang, R. G. Prinn, S. O'Doherty, D. Young, R. F. Weiss, G. S. Dutton, J. W. Elkins, P. B. Krummel, R. Langenfelds, L. P. Steele (2018), Top-down constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique, Atmos. Chem. Phys., 18, 735-756, https://doi.org/10.5194/acp-18-735-2018.
    • Zhang, L., Y. Chen, Y. Zhao, Y. D. K. Henze, L. Zhu, Y. Song, F. Paulot, X. Liu, Y. Pan, B. Huang (2018), Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates, Atmos. Chem. Phys., 18, 339-355, https://doi.org/10.5194/acp-18-339-2018.
    • Bousserez, N. and D. K. Henze (2018), Optimal and scalable methods to approximate the solutions of large-scale Bayesian problems: Theory and application to atmospheric inversions and data assimilation, Q. J. R. Meteorol. Soc., 144, 365 – 390, https://doi.org/10.1002/qj.3209.


  • 2017
    • Xu, J., R. V. Martin, A. Morrow, S. Sharma, L. Huang, W. R. Leaitch, J. Burkart, H. Schulz, M. Zanatta, M. D. Willis, D. K. Henze, C. J. Lee, A. B. Herber, J. P. D. Abbatt (2017), Source attribution of Arctic black carbon constrained by aircraft and surface measurements, Atmos. Chem. Phys., 17, 11971-11989, https://doi.org/10.5194/acp-17-11971-2017.
    • Qi, L., Q. Li, D. K. Henze, H.-L. Tseng, and C. He, Sources of springtime surface black carbon in the Arctic: an adjoint analysis for April 2008 (2017), Atmos. Chem. Phys., 17, 9697-9716, https://doi.org/10.5194/acp-17-9697-2017.
    • Qu, Z., D. K. Henze, S. L. Capps, Y. Wang, X. Xu, J. Wang (2017), Monthly top-down NOx emissions for China (2005-2012): a hybrid inversion method and trend analysis, J. Geophys. Res., 122, 4600-4625, doi:10.1002/2016JD025852.
    • Lee, H.-M., R. J. Park, D. K. Henze, S. Leeb, C. Shim, H.-J. Shine, K.-J. Moone, J.-H. Woo (2017), PM2.5 source attribution for Seoul in May from 2009 to 2013 using GEOS-Chem and its adjoint model, Environmental Pollution, 221:377-38.
    • Jiang, Z., J. R. Worden, H. Worden, M. Deeter, D. B. A. Jones, A. Arellano, D. K. Henze (2017), A fifteen year record of CO emissions constrained by MOPITT CO observations, Atmos. Chem. Phys., 17, 4565-4583, doi:10.5194/acp-17-4565-2017
    • Xu, X., J. Wang, Y. Wang, D. K. Henze, L. Zhang, G. A. Grell, S. McKeen. and B. Wielicki (2017), Sense Size-Dependent Dust Loading and Emission from Space Using Reflected Solar and Infrared Spectral Measurements: An Observation System Simulation Experiment, J. Geophys. Res. Atmos., 122, 8233-8254, doi: 10.1002/2017JD026677.
    • Lacey F. G., E. A. Marais, D. K. Henze, C. J. Lee, A. van Donkelaar, R. V. Martin, M. P. Hannigan, C. Wiedinmyer, Improving present day and future estimates of anthropogenic sectoral emissions and the resulting air quality impacts in Africa, Faraday Discuss., 200, 397-412.
    • Cui, Y., J. Brioude, W. M. Angevine, J. Peischl, S. A. McKeen, S-W. Kim, J. Neuman, D. K. Henze, N. Bousserez, M. Fischer, S. Jeong, H. Michelsen, R. P. Bambha, Z. Liu, G. W. Santoni, B. Duabe, E. Kort, G. Frost, T. B. Ryerson, S. C. Wofsy, M. Trainer (2017). Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The San Joaquin Valley, J. Geophys. Res. Atmos., 122, 3686--3699, doi:10.1002/2016JD026398, online.
    • Cooper, M., R. V. Martin, A. Padmanabhan, and D. K. Henze (2017), Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions, J. Geophys. Res. Atmos., 122, 4718-4734, doi:10.1002/2016JD025985 online.


  • 2016
    • Wang, Y., J. Wang, X. Xu, D. K. Henze, Y. Wang, Z. Qu (2016), A new approach for monthly updates of anthropogenic sulfur dioxide emissions from space: implications for air quality forecasts, Geophys. Res. Lett., 43, 9931–9938.
    • Lee, H.-M., F. Paulot, D. K. Henze, K. Travis, D. J. Jacob, L. H. Pardo, B. Schichtel (2016), Sources of nitrogen deposition in Federal Class I areas in the US, Atmos. Chem. Phys, 16, 525-540, doi:10.5194/acp-16-1-2016
    • Zhang, L., J. Shao, X. Lu, Y. Zhao, Y. Hu, D. K. Henze, H. Liao, S. Gong, Q. Zhang (2016), Sources and processes affecting fine particulate matter pollution over North China: an adjoint analysis of the Beijing APEC period, Environ. Sci. Technol., 50 (16), 8731-8740, doi:10.1021/acs.est.6b03010
    • Bousserez, N., D. K. Henze, B. Rooney, A. Perkins, K. J. Wecht, A. J. Turner, V. Natraj, J. R. Worden, Constraints on methane emissions in North America from future geostationary remote sensing measurements, Atmos. Chem. Phys., 16, 6175-6190, 2016, https://doi.org/10.5194/acp-16-6175-2016
    • Tan, Z., Q. Zhuang, D. K. Henze, C. Frankenberg, E. Dlugokencky, C. Sweeney, A. J. Turner, M. Sasakawa, T. Machida, Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?, Atmos. Chem. Phys., 16, 12649–12666, doi:10.5194/acp-16-12649-2016.
  • 2015
    • Zhang, L., L. Licheng, Y. Zhao, S. Gong, X. Zhang, D. K. Henze, S. L. Capps, T.-M. Fu, Q. Zhang, Source attribution of particulate matter pollution over North China with the adjoint method, Environ. Res. Lett. 10 084011.
    • Zhao, Y. H., L. Zhang, Y. P. Pan, Y. S. Wang, F. Paulot, and D. K. Henze, Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution, submitted.
    • Lapina, K., D. K. Henze, J. B. Milford, C. Cuvelier, and M. Seltzer, Implications of RCP Scenarios for future changes in vegetative exposure to ozone in the Western U.S., Geophys. Res. Let., Atmos. Chem. Phys., 15, 10905-10924, 2015, https://doi.org/10.5194/acp-15-10905-2015
    • Whaley, C. H., K. Strong, D. B. A. Jones, T. W. Walker, Z. Jiang, D. K. Henze, M. Cooke, C. A. McLinden, M. Pommier, R. L. Mittermeier, P. F. Fogal, Improvements to our understanding of urban ozone air pollution: Sources of Toronto-area ozone during poor air quality events, J. Geophys. Res. Atmos., 120, 11,368–11,390, doi:10.1002/2014JD022984.
    • Liu, J., Bowman, K., and Henze, D., Source-receptor relationships of column-average CO2 and implications for the impact of observations on flux inversions., J. Geophys. Res. Atmos., 120,5214–5236, doi:10.1002/2014JD022914
    • Turner, A. J. and D. J. Jacob, Balancing aggregation and smoothing errors in inverse models, Atmos. Chem. Phys., 15, 7039-7048, 2015, https://doi.org/10.5194/acp-15-7039-2015
    • Turner, A. J., D. J. Jacob, K. J. Wecht, J. D. Maasakkers, S. C. Biraud, H. Boesch, K. W. Bowman, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V. H. Payne, R. Sussmann, V. A. Velazco, T. Warneke, P. O. Wennberg, and D. Wunch, Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data, Atmos. Chem. Phys., 15, 7049-7069, 2015,https://doi.org/10.5194/acp-15-7049-2015
    • Zhang, L., D. K. Henze, G. A. Grell, G. R. Carmichael, N. Bousserez, Q. Zhang, J. Cao, O. Torres, C. Ahn, Z. Lu, Y. Mao, Constraining black carbon aerosol over Southeast Asia using OMI aerosol absorption optical depth and the adjoint of GEOS-Chem, Atmos. Chem. Phys., 15, 10281-10308, doi:10.5194/acp-15-10281-2015.
    • Patrick S. Kim, Daniel J. Jacob, Loretta J. Mickley, Shannon N. Koplitz, Miriam E. Marlier, Ruth S. DeFries, Samuel S. Myers, Boon Ning Chewf, Yuhao H. Mao, Sensitivity of population smoke exposure to fire locations in Equatorial Asia, doi:10.1016/j.atmosenv.2014.09.045
    • Deng, F., D. B. A. Jones, T. W. Walker, M. Keller, K. W. Bowman, D. K. Henze, R. Nassar, E. A. Kort, S. C. Wofsy, K. A. Walker, A. E. Bourassa, and D. A. Degenstein, Sensitivity analysis of the potential impact of discrepancies in stratosphere-troposphere exchange on inferred sources and sinks of CO2, Atmos. Chem. Phys. Discuss., 15, 10813-10851, doi:10.5194/acpd-15-10813-2015.
    • Jiang, Z., D. B. A. Jones, J. R. Worden, H. M. Worden, D. K. Henze, Y. X. Wang, Regional data assimilation of multi-spectral MOPITT observations of CO over North America, Atmos. Chem. Phys. Discuss., 15, 5327-5358, doi:10.5194/acpd-15-5327-2015.
    • Zhu, L., D. K. Henze, J. Bash, G. Jeong, K. Cady-Pereira, M. Shephard, M. Luo, F. Paulot, and S. Capps, Global evaluation of ammonia bi-directional exchange, Atmos. Chem. Phys. Discuss., 15, 4823-4877, doi:10.5194/acpd-15-4823-2015.
    • Jiang, Z., J. R. Worden, D. B. A. Jones, J.-T. Lin, W. Verstraeten, and D. K. Henze, Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT, Atmos. Chem. Phys., 15, 99-112.
    • Lee, C.J., R.V. Martin, Henze D.K., Brauer M., Cohen A., and A. van Donkelaar, Sensitivity of global particulate-matter-related mortality to local precursor emissions, Environ. Sci. Technol., 49(7), 4335–4344, doi:10.1021/acs.est.5b00873, 2015.
    • Bousserez, N., D. K. Henze, A. Perkins, K. W. Bowman, M.Lee, J.Liu, D.B.A. Jones, F. Deng, Improved analysis-error covariance matrix for high-dimensional variational inversions: application to source estimation using a 3D atmospheric transport model. Q.J.R. Meteorol. Soc.. doi: 10.1002/qj.2495
  • 2014
    • Jiang, Z., D. B. A Jones, H. M. Worden, and D. K. Henze, Sensitivity of inferred regional CO source estimates to the vertical structure in CO as observed by MOPITT, Atmos. Chem. Phys. Discuss., 14, 22939-22984
    • Zhu, Q., Q. Zhuang, D. K. Henze, K. Bowman, M. Chen, Y. Liu, Y. He, H. Matsueda, T. Machida, and Y. Sawa, Constraining terrestrial ecosystem CO2 fluxes by integrating models of biogeochemistry and atmospheric transport and data of surface carbon fluxes and atmospheric CO2 concentrations, Atmos. Chem. Phys. Discuss., 14, 22587-22638
    • Mao, Y. H., Q. B. Li, D. K. Henze, Z. Jiang, D. B. A. Jones, M. Kopacz, C. He, L. Qi, M. Gao, W.-M. Hao, and K.-N. Liou, Variational estimates of black carbon emissions in the western United States, Atmos. Chem. Phys. Discuss., 14, 21865-21916
    • Liu, J., Bowman, K., Lee, M., Henze, D., Bousserez, N., Brix, H., Collatz, G., Menemenlis, D., Ott, L., Pawson, S., Jones, D., Nassar, R.. Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric sources and sinks. Tellus B, North America, 66, may. 2014. Available at: http://www.tellusb.net/index.php/tellusb/article/view/22486
    • Lee, H., D. K. Henze, B. Alexander, and L. T., Murray, Investigating the sensitivity of surface-level nitrate seasonality in Antarctica to primary sources using a global model, Atmos. Environ., 89, 757--767, doi:0.1016/j.atmosenv.2014.03.003
    • Paulot, F., D. J. Jacob, R. W. Pinder, J. O. Bash, K. Travis, D. K. Henze, Ammonia emissions in the United States, Europe, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3), J. Geophys. Res., 119, 7, 4343--4364, doi:10.1002/2013JD021130.
    • Lapina, K., D. K. Henze, J. B. Milford, M. Huang, M. Lin, A. M. Fiore, G. Carmichael, G. G. Pfister, and K. W. Bowman, Assessment of source contributions to seasonal vegetative exposure to ozone in the U.S., J. Geophys. Res., 119, 324-340, doi:10.1002/2013JD020905
    • Shen, Z., J. Liu, L. W. Horowitz, D. K. Henze, S. Fan, H. Levy II, D. L. Mauzerall, J. Lin, and S. Tao,.: Analysis of transpacific transport of black carbon during HIPPO-3: implications for black carbon aging, Atmos. Chem. Phys. Discuss., 14, 505-540, doi:10.5194/acpd-14-505-2014
    • Wells, K. C., D. B. Millet, K. E. Cady-Pereira, M. W. Shephard, D. K. Henze, N. Bousserez, E. C. Apel, J. de Gouw, C. Warneke, H. B. Singh, Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor, Atmos. Chem. Phys., 14, 2555-2570
  • 2013
    • Walker, T. W., D. B. A. Jones, D. K. Henze, Z. Jiang, M. Parrington, F. Paulot, and Y. Rochon, Adjoint sensitivity analysis of North American surface ozone concentrations: Implications for dry deposition, American Geophysical Union, Fall Meeting 2013, abstract id. A33L-03.
    • Deng, F., D. B. A. Jones, D. K. Henze, N. Bousserez, K. W. Bowman, J. B. Fisher, R. Nassar, C. O'Dell, D. Wunch, P. O. Wennberg, E. A. Kort, S. C. Wofsy, T. Blumenstock, N. M. Deutscher, D. Griffith, F. Hase, P. Heikkinen, V. Sherlock, K. Strong, R. Sussmann, and T. Warneke, Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data, Atmos. Chem. Phys. Discuss., 13, 26327-26388
    • Meland, B., X. Xu, D. K. Henze, J. Wang, Assessing remote polarimetric measurements sensitivities to aerosol emissions using the GEOS-Chem adjoint model, Atmos. Meas. Tech. Discuss., 6, 5447-5493, doi:10.5194/amtd-6-5447-2013
    • Xu, X., J. Wang, D. K. Henze, W. Qu, M. Kopacz (2013), Constraints on Aerosol Sources Using GEOS-Chem Adjoint and MODIS Radiances, and Evaluation with Multi-sensor (OMI, MISR) data, J. Geophys. Res., 118, doi:10.1002/jgrd.50515.
    • Paulot, F., D. J. Jacob and D. K. Henze, Sources and processes contributing to nitrogen deposition in biodiversity hotspots worldwide, Environ. Sci. Technol, 47, 3226-3233, doi:10.1021/es3027727.
    • Koo, J., Q. Wang, D. K. Henze, I. A. Waitz, S.R.H. Barrett, Spatial sensitivities of human health risk to intercontinental and high-altitude pollution, Atmos. Environ., 71, 140-147.
    • Kharol, S., R. V. Martin, S. Philip, S. Vogel, D. K. Henze, D. Chen, Y. Wang, Q. Zhang, C. L. Heald, Persistent Sensitivity of Asian Aerosol to Emissions of Nitrogen Oxides, Geophys. Res. Lett., 40, 1021-1026, doi:10.1002/grl.50234.
    • Jiang, Z., D. B. A. Jones, H. M. Worden, M. N. Deeter, D. K. Henze, J. Worden, and K. W. Bowman, Quantifying the impact of model biases in convective transport on inferred CO source estimates using multi-spectral CO retrievals from MOPITT, J. Geophys. Res.,118, doi:10.1029/jgrd.50216
    • L. Zhu, D. K. Henze, K. E. Cady-Pereira, M. W. Shephard, M. Luo, R. W. Pinder, J. O. Bash, G. Jeong, Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint model, J. Geophys. Res., 118, doi:10.1002/jgrd.50166
    • Koo, J., Q. Wang, D. K. Henze, I. A. Waitz, S.R.H. Barrett, Spatial sensitivities of human health risk to intercontinental and high-altitude pollution, Atmos. Environ., 71, 140-147
  • 2012
    • Bowman, K. W., and D. K. Henze, Attribution of direct ozone radiative forcing to spatially-resolved emissions, Geophys. Res. Lett., 39, L22704, doi:10.1029/2012GL053274.
    • Henze, D. K., D. T. Shindell, F. Akhtar, R. J. D. Spurr, R. W. Pinder, D. Loughlin, M. Kopacz, K. Singh, and C. Shim, Spatially refined aerosol direct radiative forcing efficiencies, Environ. Sci. Technol., 46, 9511 - 9518, dx.doi.org/10.1021/es301993s.
    • Karydis, V. A., S. L. Capps, R. H. Moore, A. Russell, D. K. Henze, and A. Nenes, Using a global aerosol model adjoint to unravel the footprint of spatially-distributed emissions on cloud droplet number and cloud albedo, Geophys. Res. Lett., 39, L24804, doi:10.1029/2012GL053346.
    • Parrington, M., P. I. Palmer, D. K. Henze, D. W. Tarasick, E. J. Hyer, R. C. Owen, C. Clerbaux, K. W. Bowman, M. N. Deeter, E. M. Barratt, P.-F. Coheur, D. Hurtmans, M. George, and J. R. Worden, The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010, Atmos. Chem. Phys., 12, 2077-2098.
    • Paulot, F., D. K. Henze, and P. O. Wennberg, Impact of the isoprene photochemical cascade on tropical ozone, Atmos. Chem. Phys., 12, 1307-1325.
    • Singh, K. and A. Sandu, 2012: Variational chemical data assimilation with approximate adjoints. Computers and Geosciences, 40, 10-18.
    • Turner, A., D. K. Henze, R. V. Martin, and A. Hakami, The spatial extent of source influences on modeled column concentrations of short-lived species, Geophys. Res. Lett., 39, L12806, doi:10.1029/2012GL051832.
    • Walker, T., D. B. A. Jones, M. Parrington, D. K. Henze, L. T. Murray, J. W. Bottenheim, K. Anlauf, J. R. Worden, K. W. Bowman, C. Shim, K. Singh, M. Kopacz, D. W. Tarasick, J. Davies, P. von der Gathen, and C. C. Carouge, Impacts of midlatitude precursor emissions and local photochemistry on ozone abundances in the Arctic, J. Geophys. Res.,117, D01305 doi:10.1029/2011JD016370.
    • Wang, J., X. Xu, D. K. Henze, Q. Ji, S.-C. Tsay (2012), J. Huang, Top-Down Estimate of Dust Emissions through Integration of MODIS and MISR Aerosol Retrievals with the GEOS-Chem adjoint model, Geophys. Res. Lett., 39, L08802.
    • Wecht, K. J., D. J. Jacob, S. C. Wofsy, E. A. Kort, J. R. Worden, S. S. Kulawik, D. K. Henze, M. Kopacz, and V. H. Payne, Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources, Atmos. Chem. Phys., 12, 1823-1832.
    • Singh, K. and A. Sandu (2012). "Variational chemical data assimilation with approximate adjoints." Computers and Geosciences 40: 10-18.
  • 2011
    • Jiang, Z., D. B. A. Jones, M. Kopacz, J. Liu, D. K. Henze, and C. Heald, Quantifying the impact of model errors on top-down estimates of carbon monoxide emissions using satellite observations, J. Geophys. Res., 116, D15306, doi:10.1029/2010JD015282.
    • Jiang, Z., D. B. A. Jones, M. Kopacz, J. Liu, D. K. Henze, and C. Heald (2011), Quantifying the impact of model errors on top-down estimates of carbon monoxide emissions using satellite observations, J. Geophys. Res., 116, D15306, doi:10.1029/2010JD015282.
    • Kopacz, M., D. L. Mauzerall, J. Wang, E. M. Leibensperger, D. K. Henze, and K. Singh, Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau, Atmos. Chem. Phys., 11, 2837-2852.
  • 2010
    • Kopacz, M., D. J. Jacob, J. A. Fisher, J. A. Logan, L. Zhang, I. A Megretskaia, R. M. Yantosca, K. Singh, D. K. Henze, J. P. Burrows, M. Buchwitz, I. Khlystova, W. W. McMillan, J. C. Gille, D. P. Edwards, A. Eldering, V. Thouret, and P. Nedelec (2010), Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), Atoms. Chem. Phys., 10, 855-876.
    • Kopacz, M., D.J. Jacob, J.A. Fisher, J. A. Logan, L. Zhang, I. A. Megretskaia, R. M. Yantosca, K. Singh, D. K. Henze, J. P. Burrows, M. Buchwitz, I. Khlystova, W. W. McMillan, J. C. Gille, D. P. Edwards, A. Eldering, V. Thouret, and P. Nedelec (2010): Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855-876. http://www.atmos-chem-phys.net/10/855/2010/acp-10-855-2010.
    • Parrington, M., P. I. Palmer, D. K. Henze, D. W. Tarasick, E. J. Hyer, R. C. Owen, C. Clerbaux, K. W. Bowman, M. N. Deeter, E. M. Barratt, P.-F. Coheur, D. Hurtmans, M. George, and J. R. Worden (2012), The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010, Atmos. Chem. Phys., 12, 2077-2098
    • Singh, K., Jardak, M., Sandu, A., Bowman, K., Lee, M., and Jones, D. (2010): Construction of non-diagonal background error covariance matrices for global chemical data assimilation, Geosci. Model Dev. Discuss., 3, 1783-1827, doi:10.5194/gmdd-3-1783-2010. http://www.geosci-model-dev-discuss.net/3/1783/2010/gmdd-3-1783-2010.html
  • 2009
    • Eller, P., K. Singh, A. Sandu, K. Bowman, D. K. Henze, and M. Lee (2009), Implementation and evaluation of an array of chemical solvers in a global chemical transport model, Geosci. Mod. Devel., 2, 185-207.
    • Henze, D. K., J. H. Seinfeld and D. T. Shindell, (2009), Inverse modeling and mapping U.S. air quality influences of inorganic PM2.5 precursor emissions with the adjoint of GEOS-Chem, Atoms. Chem. Phys., 9, 5877-5903.
    • Kopacz, M., D. J. Jacob, D. K. Henze, C. L. Heald, D. G. Streets, and Q. Zhang (2009), A comparison of analytical and adjoint Bayesian inversion methods for constraining Asian sources of CO using satellite (MOPITT) measurements of CO columns, J. Geophys. Res., 114, D04305, doi:10.1029/2007JD009264.
    • Pye, H. O. T., H. Liao, S. Wu, L. J. Mickely, D. J. Jacob, D. K. Henze, and J. H. Seinfeld (2009), Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States, J. Geophys. Res., 114, D01205, doi:10.1029/2008JD010701.
    • Zhang, L., D. J. Jacob, M. Kopacz, D. K. Henze, K. Singh, and D. A. Jaffe (2009), Intercontinental source attribution of ozone pollution at western U.S. sites using an adjoint method, Geophys. Res. Lett., 36, L11810, doi:10.1029/2009GL037950.
  • 2007
    • Henze, D. K., A. Hakami and J. H. Seinfeld (2007), Development of the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7, 2413-2433.

Conference proceedings

  • Singh, K., P. Eller, A. Sandu, D. K. Henze, K. Bowman, M. Kopacz, and M. Lee (2009), Towards the construction of a standard geos-chem adjoint model, ACM High Performance Computing Conference.
  • Kopacz, M., Mauzerall, D.L., Leibensperger, E.M., Wang, J., Henze, D.K., Singh, K., Shim, C. Identifying the origin and estimating the radiative forcing of BC in the Himalayas: an analysis using the global GEOS-Chem adjoint model, European Geophysical Union meeting, Vienna, May 4, 2010.
  • Kopacz, M., Jacob, D.J., Fisher, J.A., Logan, J.A., Zhang, L., Megretskaia, I.A., Yantosca, R.M., Singh, K., Henze, D.K., Burrows, J.P., Buchwitz, M., Khlystova, I., McMillan, W.W., Gille, J.C., Edwards, D.P., Eldering, A., Thouret, V., Nedelec, P. Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), European Geophysical Union meeting, Vienna, May 7, 2010.
  • Tang, J., Zhuang, Q. and Xiong, X. (2010), 4D-Var inversion of atmospheric methane fluxes by assimilating SCIAMACHY and AIRS satellite retrievals, AGU, Dec. 18, 2010, http:/web.ics.purdue.edu/~tang16/agu2010_tang.ppt