Photolysis mechanism
This page describes some of the updates to the FAST-J photolysis mechanism, as is currently implemented in GEOS-Chem.
Input files for FAST-J
The following input files are required for the FAST-J photolysis mechanism:
- ratj.d
- This file is where you specify each of the FAST-J photolysis species. Each species is mapped to a corresponding entry of the GEOS-Chem chemical mechanism.
- jv_atms.dat
- This file specifies the reference O3 climatology for FAST-J. NOTE: GEOS-Chem will overwrite this reference climatology with TOMS/SBUV data for those months and locations where such data exists.
- jv_spec.dat
- This file is where the various quantum yields and aerosol cross-sections are specified.
O1D reaction updated to JPL 2006
As of GEOS-Chem v8-01-02, the rate constants in the "FAST-J" jv_atms.dat file have been updated by Lin Zhang.
These were the old values:
O3_1d 180 9.500E-01 9.330E-01 4.270E-01 6.930E-02 6.060E-02 0.0 0.0 O3_1d 260 9.500E-01 9.420E-01 4.890E-01 1.360E-01 7.110E-02 0.0 0.0 O3_1d 300 9.500E-01 9.550E-01 5.870E-01 2.370E-01 8.570E-02 0.0 0.0
which are now replaced by the new values from JPL 2006:
O3_1d 180 9.000E-01 9.000E-01 3.824E-01 8.092E-02 7.650E-02 0.0 0.0 O3_1d 260 9.000E-01 9.000E-01 4.531E-01 1.438E-01 7.654E-02 0.0 0.0 O3_1d 300 9.000E-01 9.000E-01 5.273E-01 2.395E-01 7.659E-02 0.0 0.0
For more information, please contact Lin Zhang (lzh@io.as.harvard.edu).
--Bob Y. 11:16, 23 May 2008 (EDT)
Cloud overlap options in FAST-J
GEOS-Chem now has 3 cloud overlap options in the FAST-J photolysis mechanism:
Linear cloud overlap assumption
The linear cloud overlap option is the default in GEOS-Chem versions v8-01-01 and prior. The option is:
Grid Box Optical depth = In-cloud optical depth * Cloud fraction.
Approximate random overlap assumption
This approximate random overlap option will be introduced into the standard code in GEOS-Chem v8-01-02 (benchmark run #1).
Grid Box Optical Depth = In-Cloud Optical Depth * ( Cloud Fraction )^1.5
Maximum random overlap assumption
This maximum random overlap option is much more computationally intensive, and therefore is not used as the default option. However, if you wish to use this option, then manually edit the fast_j.f source code file such that OVERLAP = 3.
The Maximum-Random Overlap (MRAN) scheme assumes that clouds in adjacent layers are maximally overlapped to form a cloud block and that blocks of clouds separated by clear layers are randomly overlapped. A vertical profile of fractional cloudiness is converted into a series of column configurations with corresponding fractions see Liu et al., JGR 2006; hyl,3/3/04).
For more details about cloud overlap assumptions and their effect on photolysis frequencies and key oxidants in the troposphere, refer to the following articles:
- Liu, H., et al., Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical transport model, J. Geophys. Res., 111, D20303, doi:10.1029/2005JD006403, 2006.
- Tie, X., et al., Effect of clouds on photolysis and oxidants in the troposphere, J. Geophys. Res., 108(D20), 4642, doi:10.1029/2003JD003659, 2003.
- Feng, Y., et al., Effects of cloud overlap in photochemical models, J. Geophys. Res., 109, D04310, doi:10.1029/2003JD004040, 2004.
- Stubenrauch, C.J., et al., Implementation of subgrid cloud vertical structure inside a GCM and its effect on the radiation budget, J. Clim., 10, 273-287, 1997.
Discussion
25-Sep-2007
Hongyu Liu (hyl@nianet.org) wrote:
- I have a comment about how the effect of cloud overlap in the vertical may be included in GEOS-Chem. The standard GEOS-Chem assumes linear scaling of cloud optical depth with cloud fraction in a grid box, i.e., the grid average cloud optical depth TAU' = TAU * f, where TAU is the COD in the cloudy portion of the grid and f is cloud fraction in the layer. This linear assumption (LIN) not only introduces a significant bias because of the nonlinear relationship between J-values and COD, but also is not consistent with the cloud-radiation interactions taking place in the original GEOS-DAS. Current GCMs or DAS usually use random overlap (RAN) or maximum-random overlap (MRAN) in their cloud-radiation packages.
- Ideally, GEOS-Chem should use the same cloud overlap assumption as the one used in GEOS-DAS where TOA radiative fluxes have been validated against e.g. satellite observations. But the ("exact") random overlap and MRAN approaches are computationally expensive. Fortunately, the so-called "approximate" random overlap scheme [TAU' = TAU * f^(3/2) which is computationally cheap] has been demonstrated to be a good approximation to both the "exact" random overlap and MRAN calculations. For details, see my GEOS-Chem cloud paper (section 2.3 & Figures 8d,9d: http://research.nianet.org/~hyl/publications/liu2006_cloud1.abs.html
- So, if we don't want to use any cloud overlap assumptions because of computational cost, the "approximate" random overlap seems a good option - it makes more sense physically and is more consistent with the mother GCM or DAS. Actually it has been used in the MOZART model for years [see Brasseur et al., 1998].
- Hongyu Liu
For more information, please contact Hongyu Liu (hyl@nianet.org).
--Bob Y. 12:44, 23 May 2008 (EDT)