Updating standard chemistry with JPL 10-6
This page is intended to incorporate the latest version of JPL chemical kinetics (June 15, 2011) into GC standard chemistry.
Standard Chemistry
For Consideration
Below is a list of reactions that were updated in the JPL 10-6 document. Note that the temperature sensitivity value, E/R, is entered following JPL format, so the sign is opposite of the GEOS-Chem format.
Description | A | E/R |
HO2 + HO2 -> H2O2 + O2 | 3.0e–13 | -460 |
HO2 + HO2 + M -> H2O2 + O2 | 2.1e-33 | -920 |
HO2 + HO2 + H2O -> products | 5.4e–11 | 410 |
HO2 + NO -> NO2 + OH | 3.3e-12 | -270 |
ISOP + NO3 -> products | 3.3e-12 | 450 |
ISOP + OH -> products | 3.1e-11 | -350 |
ISOP + O3 -> products | 1e-14 | 1970 |
ALD2 + OH -> products | 4.63e-12 | -350 |
C2H6 + OH -> products | 7.66e-12 | 1020 |
Perhaps we should consider adding O1D + H2 -> OH + H (A=1.2e-10). The reaction rate could be added to the parametrization of O3 photolysis to 2 OH. This reaction is included in other chemical mechanisms (e.g., Carbon Bond 05 and MOZART4).
Species
Species | Formula | Note |
A3O2 | CH3CH2CH2OO | primary RO2 from C3H8 |
ACET | CH3C(O)CH3 | acetone |
ACTA | CH3C(O)OH | acetic acid |
ALD2 | CH3CHO | acetaldehyde |
ALK4 | RH | ≥C4 alkanes |
ATO2 | CH3C(O)CH2O2 | RO2 from acetone |
B3O2 | CH3CH(OO)CH3 | secondary RO2 from C3H8 |
C2H6 | C2H6 | ethane |
C3H8 | C3H8 | propane |
CH2O | CH2O | formaldehyde |
CH4 | CH4 | methane |
CO | CO | carbon monoxide |
CO2 | CO2 | carbon dioxide |
DRYDEP | generic entry for dry dep | |
EMISSION | generic entry to do emissions | |
EOH | C2H5OH | ethanol |
ETO2 | CH3CH2OO | ethylperoxy radical |
ETP | CH3CH2OOH | ethylhydroperoxide |
GLYC | HOCH2CHO | glycoaldehyde (hydroxyacetaldehyde) |
GLYX | CHOCHO | glyoxal |
H2 | H2 | hydrogen atom |
H2O | H2O | water vapor |
H2O2 | H2O2 | hydrogen peroxide |
HAC | HOCH2C(O)CH3 | hydroxyacetone |
HCOOH | HCOOH | formic acid |
HNO2 | HONO | nitrous acid |
HNO3 | HNO3 | nitric acid |
HNO4 | HNO4 | pernitric acid |
HO2 | HO2 | hydroperoxyl radical |
IALD | HOCH2C(CH3)=CHCHO | hydroxy carbonyl alkenes from isoprene |
IAP | HOCH2C(CH3)(OOH)CH(OH)CHO | peroxide from IAO2 |
INO2 | O2NOCH2C(OO)(CH3)CH=CH2 | RO2 from ISOP+NO3 |
INPN | O2NOCH2C(OOH)(CH3)CH=CH2 | peroxide from INO2 |
ISN2 | CH2=C(CH3)CH(ONO2)CH2OH | isoprene nitrtate |
ISNO3 | RONO2 | stable organic nitrate |
ISNP | HOCH2C(OOH)(CH3)CH(ONO2)CH2OH | peroxide from ISOPNBO2 and ISOPNDO2 |
ISOP | CH2=C(CH3)CH=CH2 | isoprene |
KO2 | RO2 from >3 ketones | RO2 from >3 ketones |
M | for three body reactions | |
MACR | CH2=C(CH3)CHO | methacrolein |
MAN2 | HOCH2C(ONO2)(CH3)CHO | RO2 from MACR+NO3 |
MAO3 | CH2=C(CH3)C(O)OO | peroxyacyl from MVK and MACR |
MAOP | CH2=C(CH3)C(O)OOH | peroxide from MAO3 |
MAP | CH3C(O)OOH | peroxyacetic acid |
MCO3 | CH3C(O)OO | peroxyacetyl radical |
MEK | RC(O)R | >3 ketones |
MGLY | CH3COCHO | methylglyoxyal |
MNO3 | CH3ONO2 | methylnitrate |
MO2 | CH3O2 | methylperoxy radical |
MOH | CH3OH | methanol |
MP | CH3OOH | methylhydroperoxide |
MRO2 | HOCH2C(OO)(CH3)CHO | RO2 from MACR+OH |
MRP | HOCH2C(OOH)(CH3)CHO | peroxide from MRO2 |
MVK | CH2=CHC(O)CH3 | methylvinylketone |
N2 | N2 | nitrogen |
N2O | N2O | nitrous oxide |
N2O5 | N2O5 | dinitrogen pentoxide |
NH2 | NH2 | ammonia radical |
NH3 | NH3 | ammonia |
NO | NO | nitric oxide |
NO2 | NO2 | nitrogen dioxide |
NO3 | NO3 | nitrate radical |
O | O | oxygen atom (3P) |
O1D | O1D | oxygen atom (1D) |
O2 | O2 | molecular oxygen |
O2CH2OH | O2CH2OH | produced by CH2O+HO2 |
O3 | O3 | ozone |
OH | OH | hydroxyl radical |
PAN | CH3C(O)OONO2 | peroxyacetylnitrate |
PMN | CH2=C(CH3)C(O)OONO2 | peroxymethacryloyl nitrate (MPAN) |
PO2 | HOCH2CH(OO)CH3 | RO2 from isoprene |
PP | HOCH2CH(OOH)CH3 | peroxide from PO2 |
PPN | CH3CH2C(O)OONO2 | peroxypropionylnitrate |
PRN1 | O2NOCH2CH(OO)CH3 | RO2 from propene + NO3 |
PRPE | C3H6 | ≥C4 alkenes |
PRPN | O2NOCH2CH(OOH)CH3 | peroxide from PRN1 |
R4N1 | RO2 from R4N2 | RO2 from R4N2 |
R4N2 | RO2NO | ≥C4 alkylnitrates |
R4O2 | RO2 from ALK4 | RO2 from ALK4 |
R4P | peroxide from R4O2 | peroxide from R4O2 |
RA3P | peroxide from A3O2 | peroxide from A3O2 |
RB3P | peroxide from B3O2 | peroxide from B3O2 |
RCHO | CH3CH2CHO | >C2 aldehydes |
RCO3 | CH3CH2C(O)OO | peroxypropionyl radical |
RCOOH | C2H5C(O)OH | >C2 organic acids |
RIO1 | HOCH2C(OO)(CH3)CH=CHOH | RO2 from isoprene oxidation products |
RIO2 | HOCH2C(OO)(CH3)CH=CH2 | RO2 from isoprene |
RIP | HOCH2C(OOH)(CH3)CH=CH2 | peroxide from RIO2 |
ROH | C3H7OH | >C2 alcohols |
RP | CH3CH2C(O)OOH | peroxide from RCO3 |
VRO2 | HOCH2CH(OO)C(O)CH3 | RO2 from MVK+OH |
VRP | HOCH2CH(OOH)C(O)CH3 | peroxide from VRO2 |
DMS | (CH3)2S | dimethylsulfide |
SO2 | SO2 | sulfur dioxide |
SO4 | SO4 | sulfate radical |
MSA | CH4SO3 | methylsulfonic acid |
Reactions
No | Reaction | Rate Constant | Reference | Note | |
1 | NO + O3 = NO2 + O2 | 3.00E-12 exp(-1500/T) | JPL06 | ||
2 | O3+OH = HO2+O2 | 1.70E-12 exp(-940/T) | JPL06 | ||
3 | O3+HO2 = OH+2O2 | 1.00E-14 exp(-490/T) | JPL06 | ||
4 | O3+NO2 = O2+NO3 | 1.20E-13 exp(-2450/T) | JPL06 | ||
5 | O3+MO2 = CH2O+HO2+2O2 | 2.90E-16 exp(-1000/T) | JPL06 | ||
6 | OH+OH = H2O+O3 | 1.8E-12 | JPL06 | JMAO | |
7 | OH+OH+M = H2O2 | LPL: 6.9E-31(300/T); HPL: 2.60E-11; Fc:0.6 | JPL06 | JMAO | |
8 | OH+HO2 = H2O + O2 | 4.80E-11 exp (250/T) | JPL06 | JMAO | |
9 | OH+H2O2 = H2O + HO2 | 1.8E-12 | JPL06 | JMAO | |
10 | HO2+NO = OH + NO2 | 3.50E-12 exp(250/T) | JPL06 | ||
11 | HO2+HO2 = H2O2 HO2+HO2+M=H2O2 | K1=3.50E-13 exp(430/T); K2=1.70E-33 [M]exp(1000/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T) | JPL06 | JMAO | |
12 | OH+H2 = H2O + HO2 | 2.80E-12 exp(-1800/T) | JPL06 | JMAO | |
13 | CO+OH = HOCO | LPL: 5.9E-33(300/T)^1.4; HPL:1.1E-12(300/T)^-1.3; Fc:0.6 | JPL06 | JMAO(in calcrate.f) Ignore the intermediate species HOCO and use two 3-body reactions | |
HOCO + O2= HO2 + CO2 | 2.00E-12 | JPL06 | |||
CO+OH=HO2+CO2 (different formula) | LPL: 1.5E-13(300/T)^-0.6; HPL:2.10E9(300/T)^-6.1; Fc:0.6 | JPL06 | |||
14 | OH+ CH4 = MO2+H2O | 2.45E-12exp(–1775/T) | JPL06 | JMAO:could also be 2.8E-14T^0.667 exp(–1575/T) | |
15 | MO2+NO =CH2O+HO2+NO2 | 2.80E-12 exp(300/T) | JPL06 | ||
16 | MO2+HO2 = MP+O2 | 4.1E-13 exp(750/T) | JPL06 | JMAO | |
17 | MO2+HO2 = CH2O + O2 | N/A | JPL06(P1-59,D35) | JMAO:Not recommended in JPL06 | |
18 | MO2+MO2 =MOH+CH2O+O2 | K1=9.5E-14 exp(390/T); K2=2.62E+1 exp(-1130/T); K=K1 / (1+K2) | Tyndall 2001 | ||
19 | MO2+MO2 = 2CH2O + 2HO2 | K1=9.5E-14 exp(390/T); K2=4.00E-02exp(1130/T); K=K1 / (1+K2) | Tyndall 2001 | ||
20 | MP+OH = MO2+H2O | 2.66E-12 exp(200/T) | JPL06 | ||
21 | MP+OH = CH2O+OH+H2O | 1.14E-12 exp(200/T) | JPL06 | ||
22 | CH2O+OH = HCO +H2O | 5.5E-12 exp(125/T) | JPL06 | JMAO(use the first rate) | |
HCO + O2 = CO + HO2 | 5.2E-12 | JPL06 | |||
23 | OH + NO2 + M = HONO2 | LPL: 1.80E-30(300/T)^3; HPL:2.80E-11(300/T)^0; Fc:0.6 | JPL06 | JMAO: Ignore the HOONO channel for now. | |
OH + NO2 + M=HOONO | LPL:9.10E-32(300/T)^3.9 ; HPL:4.20E-11(300/T)^0.5; Fc:0.6 | JPL06 | |||
24 | HNO3+OH = H2O+NO3 | K0=2.41E-14 exp(460/T); K2=2.69E-17exp(2199/T); K3=6.51E-34exp(1335/T); K = K0 + K3[M] / (1 + K3[M]/K2) | JPL06 | ||
25 | NO+OH+M = HNO2+M | LPL: 7.00E-31(300/T)^2.6; HPL: 3.60E-11(300/T)^0.1; Fc: 0.6 | JPL06 | ||
26 | HNO2+OH = H2O+NO2 | 1.80E-11 exp(-390/T) | JPL06 | ||
27 | HO2+NO2+M = HNO4+M | LPL: 2.0E-31(300/T)^3.4; HPL:2.9E-12(300/T)^1.1; Fc= 0.6 | JPL06 | JMAO | |
28 | HNO4+M = HO2+NO2 | LPL: 9.52E-5(300/T)^3.4* exp(-10900/T); HPL:1.38E+15*(300/T)^1.1*exp(-10900/T); Fc=0.6 | JPL06 | JMAO:K=forward rxn/Keq; Keq=2.1E-27exp(10900/T); | |
29 | HNO4+OH = H2O+NO2+O2 | 1.30E-12 exp(380/T) | JPL06 | ||
30 | NO+NO3=2NO2 | 1.50E-11 exp(170/T) | JPL06 | ||
31 | HO2+NO3 = OH+NO2+O2 | 3.50E-12 | JPL06 | ||
32 | OH+NO3 = HO2+NO2 | 2.20E-11 | JPL06 | ||
33 | NO2+NO3+M = N2O5+M | LPL: 2.0E-30(300/T)^4.4; HPL:1.4E-12(300/T)^0.7; Fc=0.6 | JPL06 | ||
34 | N2O5+M = NO2+NO3 | LPL: 7.4E-4(300/T)^4.4* exp(-11000/T); HPL:5.18E+14*(300/T)^0.7*exp(-11000/T); Fc=0.6 | JPL06 | JMAO :K=forwardrxn/ Keq; Keq = 2.70E-27exp(11000/T); | |
35 | HCOOH+OH =H2O+CO2+HO2 | 4.00E-13 | JPL06 | ||
36 | MOH+OH = HO2+CH2O | 2.9E-12 exp(-345/T) | JPL06 | ||
37 | NO2+NO3 = NO+NO2+O2 | 4.50E-14 exp(-1260/T) | JPL06 | ||
38 | NO3+CH2O = HNO3+HO2+CO | 5.80E-16 | JPL06 | ||
39 | ALD2 + OH=H2O + 0.95 MCO3 + 0.05 CH2O + 0.05 CO + 0.05 HO2 | 4.4 E-12exp(365/T) | IUPAC06 | DBM (cannot find this reaction from JPL06) | |
40 | ALD2+NO3 = HNO3+MCO3 | 1.40E-12 exp(-1900/T) | JPL06 | JMAO | |
41 | MCO3+NO2+M = PAN | LPL: 9.70E-29(300/T)^5.6; HPL:9.3E-12(300/T)^1.5; Fc: 0.6 | JPL06 | JMAO | |
42 | PAN = MCO3+NO2 | 9.30E-29 exp(14000/T) | IUPAC06 | equilibrium with the one above | |
43 | MCO3+NO = MO2+NO2+CO2 | 8.10E-12 exp(270/T) | JPL06 | ||
44 | C2H6+OH = ETO2+H2O | 8.7E-12 exp(-1070/T) | JPL06 | ||
45 | ETO2+NO =ALD2+NO2+HO2 | 2.60E-12 exp(365/T) | JPL06 | JMAO | |
46 | C3H8+OH = B3O2 | K1=7.60e-12 exp(-585/T); K2=5.87*(300/T)^0.64exp(-816/T); K=K1 / (1+K2) | IUPAC06 | JMAO | |
C3H8+OH = A3O2 | K1=7.60E-12 exp(-585/T); K2= 0.17*(300/T)^-0.64exp(816/T); K=K1 / (1+K2) | IUPAC06 | JMAO | ||
47 | A3O2+NO = NO2 + HO2 + RCHO | 2.90E-12 exp(350/T) | IUPAC06 | JMAO | |
48 | PO2+NO = NO2+HO2+CH2O+ALD2 | 2.70E-12 exp(350/T) | Tyndall 2001 JGR | ||
49 | ALK4+OH = R4O2 | 9.10E-12 exp(-405/T) | IUPAC06 | ||
50 | R4O2+NO = NO2 +0.32ACET + 0.19MEK +0.18MO2 + 0.27HO2 +0.32ALD2 + 0.13RCHO +0.50A3O2 + 0.18B3O2 + 0.32ETO2 | K* (1-YN) where YN isreturned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.50E00) | Atkinson 97 | A3O2 is 0.05 in the input file(Palmer) | |
51 | R4O2+NO = R4N2 | K* YN where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.50E00) | Atkinson97 | ||
52 | ATO2+NO = 0.96NO2 + 0.960CH2O +0.960MCO3 + 0.04R4N2 | 2.80E-12 exp(300/T) | Tyndall | ||
53 | KO2+NO = 0.93NO2+ 0.93ALD2 +0.93MCO3 + 0.07R4N2 | 2.70E-12 exp(350/T) | Tyndall ETO2+NO | JMAO: there was a typo in last version, no yield of NO. (Bryan Duncan). | |
54 | RIO2 + NO = 0.90NO2 + 0.90HO2 + 0.34IALD + 0.34MVK + 0.22MACR + 0.56CH2O | 2.7E-12 exp(350/T) | MCM3.1 | DBM(MCM 3.1), this reaction was recently modified to turn off the other channel. | |
56 | IAO2+NO = 0.92HO2 + 0.61CO + 0.17H2 + 0.33HAC + 0.24GLYC + 0.53MGLY + 0.92NO2 + 0.35CH2O + 0.08HNO3 | 2.7E-12 exp(350/T) | Tyndall ETO2+NO | ||
57 | ISN1+NO = 1.9NO2+0.95GLYC+0.95HAC +0.05HNO3+0.05NO2+0.05HO2 | 2.7E-12 exp(350/T) | Tyndall ETO2+NO; Paulson&Seinfeld 1992 HO2 term(Palmer, JMAO) | ||
58 | VRO2+NO = NO2+0.28HO2+0.28CH2O+0.72MCO3+0.72GLYC+0.28MGLY | K* (1-YN) where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) | Atkinson 97 | ||
59 | VRO2+NO = HNO3 | K* YN where YN is returned from fyrno3.f ;K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) | Atkinson 97 | ||
60 | MRO2 + NO = NO2 + HAC + CH2O + HO2 | K* (1-YN) where YN is returned from fyrno3.f K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) | DBM(MCM 3.1) | ||
61 | MRO2+NO = HNO3 | K* YN where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) | Atkinson 97 | ||
62 | MVN2+NO = 1.90NO2 +0.30HO2+0.30CH2O+0.60MCO3+0.60GLYC+0.30MGLY+0.10HNO3 | 2.7E-12 exp(350/T) | |||
63 | MAN2+NO = 2NO2+CH2O+MGLY | 2.7E-12 exp(350/T) | Tyndall ETO2+NO | ||
64 | B3O2+NO = NO2+HO2+ACET | 2.7E-12 exp(350/T) | |||
65 | INO2+NO = 1.10NO2+0.80HO2+0.85HNO3+0.05NO2+0.10MACR+0.15CH2O+0.05MVK | 2.7E-12 exp(350/T) | Tyndall ETO2+NO | ||
66 | PRN1+NO = 2NO2+CH2O+ALD2 | 2.7E-12 exp(350/T) | Tyndall ETO2+NO | ||
67 | ALK4+NO3 = HNO3 + R4O2 | 2.8E-12 exp(-3280/T) | IUPAC02 | ||
68 | R4N2+OH = R4N1+H2O | 1.6E-12 | IUPAC06 | JMAO: use the one from HO + 1-C4H9ONO2 → products | |
69 | ACTA+OH = MO2+CO2++H2O | 4.20E-14 exp(855/T) | IUPAC06 | JMAO | |
70 | OH+RCHO= RCO3+H2O | 6.0E-12exp(410/T) | IUPAC06 | JMAO: use the one from HO + CH3CH2CH2CHO → products | |
71 | RCO3+NO2 = PPN | LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 | JPL06 | ||
72 | PPN = RCO3+NO2 | 9e-29*exp(14000/T) | JPL06 | ||
73 | MAO3+NO2 = PMN | LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 | JPL06 | ||
74 | PMN = MAO3+NO2 | 9e-29*exp(14000/T) | JPL06 | same as PPN | |
75 | GLCO3+NO2 = GLPAN | LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 | JPL06 | same as PPN | |
76 | GLPAN = GLCO3+NO2 | 9e-29*exp(14000/T) | JPL02 PPN | ||
77 | GCO3+NO2 = GPAN | LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 | JPL02 Same as PPN | ||
78 | GPAN = GCO3+NO2N | 9e-29*exp(14000/T) | JPL02 PPN | ||
79 | RCO3+NO = NO2+ETO2 | 6.70E-12 exp(340/T) | IUPAC06 C2H5CO3+NO | ||
80 | GCO3+NO = NO2+HO2 +CH2O | 6.70E-12 exp(340/T) | IUPAC06 C2H5CO3+NO | ||
81 | GLCO3+NO = NO2+HO2+CO | 6.70E-12 exp(340/T) | IUPAC06 C2H5CO3+NO | ||
82 | RCHO+NO3 = HNO3 +RCO3 | 6.5E-15 | IUPAC06 | use the one from NO3+C2H5CHO → HNO3 + C2H5CO | |
83 | ACET+OH = ATO2 + H2O | 1.33E-13+ 3.82E-11 exp(-2000/T) | JPL 06 | JMAO:Implemented as 2 reactions | |
84 | A3O2+MO2 = HO2 +0.75CH2O+0.75RCHO+0.25MOH + 0.25ROH | 5.92E-13 | Tyndall RateMO2+MO2 Atkinson97RO2+RO2 | K(RO2+MO2) = 2*sqrt(k(MO2+MO2)*k(RO2+RO2)) | |
85 | PO2+MO2 = HO2 + 0.5ALD2+1.25CH2O +0.16HAC + 0.09RCHO +0.25MOH + 0.25ROH | 5.92E-13 | Tyndall RateMO2+MO2 Atkinson97RO2+RO2 | ||
86 | R4O2+HO2 = R4P | 7.40E-13 exp(700/T) | Tyndall | ||
87 | R4N1+HO2 = R4N2 | 7.40E-13 exp(700/T) | Tyndall | ||
88 | ATO2+HO2 = MCO3 + MO2 | 8.60E-13 exp(700/T) | |||
89 | KO2+HO2 = MO2 + MGLY | 7.40E-13 exp(700/T) | Tyndall | Tyndall forms CH3C(O)CH2OOH ,this must then split and go to MCO3+MO2, the products in chem..dat ?? | |
90 | RIO2+HO2 = RIP | 7.40E-13 exp(700/T) | Tyndall | ||
91 | RIO1+HO2 = RIP | 7.40E-13 exp(700/T) | Tyndall | ||
92 | IAO2 + HO2 = IAP | 7.40E-13 exp(700/T) | Tyndall | ||
93 | ISN1+HO2 = ISNP | 7.40E-13 exp(700/T) | Tyndall | ||
94 | VRO2+HO2 = VRP | 7.40E-13 exp(700/T) | Tyndall | ||
95 | MRO2+HO2 = MRP | 7.40E-13 exp(700/T) | Tyndall | ||
96 | MVN2 + HO2 = ISNP | 7.40E-13 exp(700/T) | Tyndall | ||
97 | MAN2 + HO2 = ISNP | 7.40E-13 exp(700/T) | Tyndall | ||
98 | B3O2+HO2 = RB3P | 7.40E-13 exp(700/T) | Tyndall | ||
99 | NO2 + HO2 = INPN | 7.40E-13 exp(700/T) | Tyndall | ||
100 | PRN1 + HO2 = PRPN | 7.40E-13 exp(700/T) | Tyndall | ||
101 | MEK+OH = KO2+H2O | 1.3 E-12exp(-25/T) | IUPAC06 | JMAO | |
102 | MO2+ETO2 = 0.75CH2O+0.75ALD2+HO2+0.25MOH+0.25EOH | 3.00E-13 | Horowitz 98, Atkinson 92& 94 | ||
103 | MEK+NO3 = HNO3+ KO2 | 8.00E-16 | Lurmann et al. 1986 | ||
104 | R4O2+MO2 = 0.16ACET+0.10MEK+0.09MO2+0.14HO2+0.16ALD2 +0.07RCHO+0.03A3O2 +0.09B3O2+0.16ETO2+0.25MEK+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
105 | R4N1+MO2 = NO2+0.20CH2O+0.38ALD2 + 0.29RCHO+0.15R4O2+ 0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
106 | ATO2+MO2 = 0.30HO2+0.30CH20+0.30MCO3+0.20HAC+0.20CH2O+0.50MGLY+0.50MOH | 7.5E-13 exp(500/T) | Tyndall,2001 | ||
107 | KO2+MO2 = 0.5ALD2 +0.50MCO3+0.25MEK+0.75CH2O+0.25MOH+0.25ROH+0.5HO2 | 8.37E-14 | |||
108 | RIO2+MO2 = 0.42HO2 +0.35CH2O+0.2MVK +0.14MACR + 0.07RIO1 +0.06IALD+0.25MEK+0.75CH2O+0.25MOH+0.25ROH + 0.5HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | HO2 term is 0.43 in input file, need to be changed back to 0.42(Palmer, JMAO) | |
109 | RIO1+MO2 = 0.50IALD+0.50HO2+0.38CH2O+0.25MEK+0.75CH2O+0.25MOH+0.25ROH+ 0.5HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
110 | IAO2+MO2 = 0.50HO2 + 0.33CO + 0.09H2 + 0.18HAC + 0.13GLYC + 0.29MGLY + 0.25MEK + 0.95CH2O + 0.25MOH + 0.25ROH + 0.5HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
111 | ISN1+MO2 = NO2+0.50GLYC+0.50HAC+0.25RCHO+0.75CH2O+0.25MOH+ 0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
112 | VRO2+MO2 = 0.14HO2 + 0.14CH2O + 0.36MCO3 + 0.36GLYC + 0.14MGLY + 0.25MEK + 0.75CH2O + 0.25MOH + 0.25ROH + 0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
113 | MRO2 + MO2 = HAC + 0.85CH2O + 1.15HO2 + 0.15CO | 8.37E-14 | DBM(MCM 3.1) | ||
114 | MVN2+MO2 = NO2+0.50CH2O+0.25MCO3 +0.25MGLY+0.25HO2+0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
115 | MAN2+MO2= NO2+0.50CH2O+0.50MGLY+0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
116 | B3O2+MO2 = 0.50HO2+0.50ACET+0.25ACET +0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
117 | INO2+MO2 = 0.55NO2 + 0.40HO2 + 0.425HNO3 + 0.025NO2 + 0.05MACR + 0.08CH2O + 0.03MVK + 0.25RCHO + 0.75CH2O + 0.25MOH + 0.25ROH + 0.05HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | NISOPO2(in MCM), HO2 term is 0.5 in the input file, need to be fixed. (Palmer, JMAO) | |
118 | PRN1+MO2 = NO2+0.50CH2O+ 0.50ALD2+0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
119 | EOH+OH = HO2+ALD2 | 6.90E-12 exp(-230/T) | JPL02 | ||
120 | ROH+OH = HO2+RCHO | 4.6E-12 exp(70/T) | IUPAC06 | not in JPL06 | |
121 | ETO2+ETO2 = 2ALD2 +2HO2 | 4.10E-14 | JPL06 | ||
122 | ETO2+ETO2 = EOH + ALD2 | 2.70E-14 | JPL06 | ||
123 | HO2+ETO2 = ETP | 7.40E-13 exp(700/T) | Tyndall (see note 4) | ||
124 | A3O2+HO2 = RA3P | 7.40E-13 exp(700/T) | Tyndall | ||
125 | PO2+HO2 = PP | 7.40E-13 exp(700/T) | Tyndall | ||
126 | MCO3 + HO2 = 0.15 ACTA + 0.15 O3 + 0.44 OH + 0.44 MO2 + 0.41 MAP | 5.2e-13exp(980/T) | IUPAC(Feb2009) | DBM | |
128 | RCO3+HO2=0.3RCOOH+0.3O3+ 0.7RP | 4.30E-13 exp(1040/T) | |||
129 | GCO3 + HO2 = 0.71GP + 0.29O3 + 0.29CH2O | 4.30E-13 exp(1040/T) | DBM(MCM 3.1) | ||
130 | MAO3+HO2=0.3RCOOH+0.3O3 + 0.7MAOP | 4.30E-13 exp(1040/T) | |||
131 | GLCO3+HO2=0.3RCOOH+0.3O3+0.7GLP | 4.30E-13 exp(1040/T) | |||
132 | PRPE+OH+M = PO2 | LPL: 8.00E-27(300/T)^3.5;HPL:3.00E-11(300/T); Fc: 0.5 | IUPAC06 | JMAO | |
133 | PRPE+O3 = 0.535CH2O+0.500ALD2+0.420CO+0.300HO2+0.135OH+0.065H2+0.305MO2 | 5.50E-15 exp(-1880/T) | IUPAC06 | JMAO | |
134 | GLYX+OH = HO2+2CO | 1.1E-11 | IUPAC06 | Already updated | |
135 | MGLY+OH = MCO3+CO | 1.50E-11 | IUPAC06 | JMAO | |
136 | GLYX+NO3 = HNO3 + HO2+ 2CO | K1=1.40E-12exp(-1860/T); K=K1*([O2]+3.5D18)/(2*[O2]+3.5D18); | Atkinson92&94, (ALD2) | ||
137 | MGLY+NO3 = HNO3 + CO +MCO3 | 1.40E-12 exp(-1860/T) | Atkinson92&94, (ALD2)/IUPAC06 | ||
138 | ISOP+OH = RIO2 | 2.70E-11 exp(390/T) | IUPAC06 | ||
139 | MVK+OH = VRO2 | 2.6e-12exp(610/T) | IUPAC06 | JMAO | |
140 | MACR + OH = 0.57MAO3 + 0.43MRO2 | 8.0E-12exp(380/T) | IUPAC06 | JMAO,DBM(MCM3.1) | |
141 | HAC+OH = MGLY+HO2 | 3E-12 | Atkinson 92,94/IUPAC06 | ||
142 | MCO3+A3O2 = MO2+RCHO+HO2 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See Note 12 | ||
143 | MCO3+PO2 = MO2 +ALD2+CH2O+HO2 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See Note 12 | ||
144 | MCO3+A3O2 = ACTA +RCHO | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See Note 12 | ||
145 | MCO3+PO2 = ACTA + 0.35RCHO+0.65HAC | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See Note 12 | ||
146 | ISOP+O3 = 0.387MACR + 0.159MVK + 0.100O3 + 0.270OH + 0.070PRPE + 0.900CH2O + 0.060HO2 + 0.150CO2 + 0.050CO | 1.05E-14 exp(-2000/T) | Paulson &Seinfeld, 92 Aschmann &Atkinson, 94 | ||
147 | MVK+O3 = 0.82MGLY+ 0.80CH2O+0.20O2+0.05CO+0.06HO2+ 0.04ALD2 | 8.5 E-16exp(-1520/T) | IUPAC06 | 0.20O2->0.20O3(Palmer, JMAO, according to Paulson & Seinfeld 92) Note 12 | |
148 | MACR+O3 = 0.800MGLY +0.700CH2O+0.200O3+0.200CO+0.275HO2+0.215OH+0.160CO2 | 1.4 E-15exp(-2100/T) | IUPAC06 | JMAO | |
149 | ISOP+NO3 = INO2 | 3.15E-12 exp(-450/T) | IUPAC06 | JMAO | |
150 | MVK+NO3 = MVN2 | REMOVED (<6E-16,IUPAC06) | IUPAC06 | JMAO | |
151 | MACR+NO3 = MAN2 | 2.3E-15 | IUPAC06 | JMAO | |
152 | MACR+NO3 = MAO3+HNO3 | 1.1E-15 | IUPAC06 | JMAO:IUPAC06 total rate is 3.4E-15, so use the ratio from Lurmann et al.,1986 | |
153 | RCO3+MO2 = CH2O+HO2+ETO2 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
154 | GCO3+MO2 = 2CH2O +2HO2 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
155 | MAO3+MO2 = CH2O+HO2+CH2O+MCO3 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
156 | GLCO3+MO2 = CH2O +2HO2+CO | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
157 | RCO3+MO2 = RCOOH +CH2O | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
158 | GCO3+MO2 = RCOOH + CH2O | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
159 | MAO3+MO2 = RCOOH + CH2O | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
160 | GLCO3+MO2 = RCOOH + CH2O | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
161 | INPN+OH = INO2 | 3.80E-12 exp(200/T) | DeMore,reported in Horowitz as MP+OH | ||
162 | PRPN+OH = PRN1 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
163 | ETP+OH = 0.50OH+ 0.50ETO2+0.50ALD2 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
164 | RA3P+OH = 0.50OH + 0.50A3O2+0.50RCHO | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
165 | RB3P + OH = 0.5OH + 0.5B3O2 + 0.5ACET | 3.80E-12 exp(200/T) | JPL97,MP+OH;DBM,lumping from MCM3.1 | ||
166 | R4P+OH = 0.50OH+0.50R4O2 + 0.50RCHO | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
167 | RP+OH = 0.50OH+0.50RCO3+0.50ALD2 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
168 | PP + OH = PO2 | 3.80E-12 exp(200/T) | JPL97,MP+OH;DBM(MCM 3.1) | ||
169 | GP + OH = GCO3 | 3.80E-12 exp(200/T) | DBM(MCM 3.1) | ||
170 | GLP+OH = 0.50OH+0.50GLCO3+0.50CO | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
171 | RIP + OH = 0.509IALD + 0.509OH + 0.491RIO2 | 3.80E-12 exp(200/T) | JPL97,MP+OH;DBM,lumping from MCM3.1 | ||
172 | IAP + OH = IAO2 | 3.80E-12 exp(200/T) | JPL97,MP+OH; DBM (MCM3.1) | ||
173 | ISNP+OH = 0.50OH+0.50RCHO+0.50NO2+0.50ISN1 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
174 | VRP+OH = 0.50OH+0.50RCHO+0.50VRO2 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
175 | MRP + OH = MRO2 | 3.80E-12 exp(200/T) | JPL97,MP+OH;DBM(MCM 3.1) | ||
176 | MAOP + OH = MAO3 | 3.80E-12 exp(200/T) | JPL97,MP+OH;DBM(MCM 3.1) | ||
177 | OH+MAP = 0.50OH+0.50CH2O + 0.50MCO3 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
178 | C2H6+NO3 = ETO2+HNO3 | 1.40E-18 | Atkinson,92 | ||
179 | MNO3+OH =CH2O+NOMNO32 | 8.0E-13exp(-1000/T) | JPL06 | JMAO, The product is NO2 in the input file instead of NOMNO32. | |
180 | IALD+OH = 0.44IAO2 +0.41MAO3+0.15HO2 | 3.70E-11 | Paulson &Seinfeld, 92 | ||
181 | IALD+O3 = 0.60MGLY + 0.10OH + 0.12CH2O + 0.28GLYC + 0.30O3 + 0.40CO + 0.20H2 + 0.20HAC + 0.20HCOOH | 6.16E-15 exp(-1814/T) | Paulson &Seinfeld, 92 | MCO3+NO,MCO3,HO2,RCO3,GCO3,MAO3,GLCO3 rates are used for other radicals. | |
182 | MCO3+MCO3 = 2MO2 | 2.50E-12 exp(500/T) | Tyndall; See note 6. | RCO3+HO2 same as MCO3+HO2, RCO3+NO same as MCO3+NO, RCO3+MCO3 same asMCO3+MCO3 | |
183 | MCO3+MO2 = CH2O+MO2+HO2 | 1.80E-12 exp(500/T) | Tyndall | ||
184 | MCO3+MO2 = ACTA +CH2O | 2.00E-13 exp(500/T) | Tyndall | ||
185 | R4O2+MCO3 = MO2 +0.32ACET + 0.19MEK + 0.18MO2 + 0.27HO2 + 0.32ALD2 + 0.13RCHO + 0.05A3O2 + 0.18B3O2 + 0.32ETO2 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
186 | ATO2+MCO3 = MO2 +0.8HO2+0.2CH2O+0.2MCO3+0.8MGLY | 1.68E-12 exp(500/T) | Ibid. | ||
187 | KO2+MCO3 = MO2 +ALD2+MCO3 | 1.68E-12 exp(500/T) | Ibid. | ||
188 | RIO2+MCO3 = MO2+0.864HO2+0.690CH2O +0.402MVK+0.288MACR+0.136RIO1+0.127IALD | 1.68E-12 exp(500/T) | Ibid. | ||
189 | RIO1+MCO3 = MO2 +IALD+HO2+0.75CH2O | 1.68E-12 exp(500/T) | Ibid. | ||
190 | IAO2+MCO3 = MO2 + HO2 + 0.65CO + 0.18H2 + 0.36HAC + 0.26GLYC + 0.58MGLY + 0.4CH2O | 1.68E-12 exp(500/T) | Ibid. | ||
191 | ISN1+MCO3 = MO2+NO2+GLYC+HAC | 1.68E-12 exp(500/T) | Ibid. | ||
192 | VRO2+MCO3 = MO2+0.28HO2+0.28CH2O+0.72MCO3+0.72GLYC+0.28MGLY | 1.68E-12 exp(500/T) | Ibid. | ||
193 | MRO2+MCO3 = MO2+HO2+0.17MGLY+0.83HAC+0.83CO+0.17CH2O | 1.68E-12 exp(500/T) | Ibid. | ||
194 | B3O2+MCO3 = MO2+HO2+ACET | 1.68E-12 exp(500/T) | Ibid. | ||
195 | R4N1+MCO3 = MO2+NO2+0.39CH2O+0.75ALD2+0.57RCHO+0.30R4O2 | 1.68E-12 exp(500/T) | Ibid. | ||
196 | MVN2+MCO3 = MO2 +NO2+CH2O+0.5MCO3+0.5MGLY+0.5HO2 | 1.68E-12 exp(500/T) | Ibid. | ||
197 | MAN2+MCO3 = MO2 +NO2+CH2O+MGLY | 1.68E-12 exp(500/T) | Ibid. | ||
198 | INO2+MCO3 = MO2 +0.10NO2 + 0.80HO2 +0.85HNO3 + 0.05NO2 +0.10MACR + 0.15CH2O +0.05MVK | 1.68E-12 exp(500/T) | Ibid. | ||
199 | PRN1+MCO3 = MO2 +NO2+CH2O+ALD2 | 1.68E-12 exp(500/T) | Ibid. | ||
200 | R4O2+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
201 | ATO2+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
202 | KO2+MCO3 = MEK + ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
203 | RIO2+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
204 | RIO1+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
205 | IAO2+MCO3 = MEK+ ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
206 | VRO2+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
207 | MRO2+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
208 | R4N1+MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
209 | ISN1+MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
210 | MVN2+MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
211 | MAN2+MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
212 | INO2+MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
213 | PRN1 + MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
214 | B3O2+MCO3 = ACET +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
215 | MCO3+ETO2 = MO2+ALD2+HO2 | 1.68E-12 exp(500/T) | Ibid. | ||
216 | MCO3+ETO2 = ACTA +ALD2 | 1.87E-13 exp(500/T) | Ibid. | ||
217 | RCO3+MCO3 = MO2 + ETO2 | 2.50E-12 exp(500/T) | Tyndall,MCO3+MCO3 | ||
218 | GCO3+MCO3 = MO2 + HO2+ CH2O | 2.50E-12 exp(500/T) | Tyndall,MCO3+MCO3 | ||
219 | MAO3+MCO3 = MO2 + CH2O + MCO3 | 2.50E-12 exp(500/T) | Tyndall,MCO3+MCO3 | ||
220 | GLCO3+MCO3 = MO2+ HO2+ CO | 2.50E-12 exp(500/T) | Tyndall,MCO3+MCO3 | ||
221 | NO3+NO3 = 2NO2 + O2 | 8.50E-13 exp(-2450/T) | JPL 06 | ||
222 | HO2 = 0.50H2O2 | gamma=2E-1 | Jacob, 2000 | ||
223 | NO2 = 0.50HNO3 +0.50HNO2 | gamma=1E-4 | Jacob, 2000 | ||
224 | NO3 = HNO3 | gamma=1E-3 | Jacob, 2000 | ||
225 | N2O5 = 2HNO3 | gamma=fct(aerosol type, rh,temp) | Evans et al., 2005 | ||
226 | DMS+OH = SO2+MO2+CH2O | 1.1E-11exp(-240/T) | JPL06 | JMAO | |
227 | DMS+OH+O2 = 0.75SO2+0.25MSA+MO2 | K1=1.0E-39exp(5820/T); K2=5.0E-30exp(6280/T); K=K1*[O2]/(1.0+K2*[O2]) | JPL06 | MJE | |
228 | DMS+NO3 = SO2+HNO3 +MO2+CH2O | 1.90E-13 exp(500/T) | JPL2003 | ||
229 | SO2+OH+M = SO4+HO2 | LPL: 3.30E-31(300/T)^4.3; HPL:1.60E-12; Fc: 0.6 | JPL06 | JMAO | |
230 | MAO3 + NO=MCO3 + CH2O + NO2 | 6.7E-12exp(340/T) | IUPAC2006 | Palmer, May, JMAO:"This reaction doesn't exist in the manual but is in the input The rate is from IUPAC2006 (or 2003), using the rate of CH3CH2C(O)O2+NO=C2H5C(O)O+NO2.
" | |
231 | RIO1+NO | ||||
232 | RIO1+NO=HNO3 | ||||
233 | PMN+OH | ||||
234 | PMN+O3 | ||||
235 | GLYC+OH =0.800GCO3+0.400CO+0.200H2+0.200HO2 | ||||
236 | PRPE+NO3=PRN1 |
Note 12:k 298 = 1e-11cm3 molec-1. Use T dep. From MCO3+MO2 according to Tyndall, and apply branching ratio from Tyndall. Keeping rate constant at 298K equal to 1E-11,means that A factor is 1.87E-12. Branching ratio from Tyndall sends 90% to the radical branch(A = 0.9*1.87E-12 = 1.68E-12), and 10% to molecular branch (A = 0.1* 1.87E-12 =1.87E-13).