Updating standard chemistry with JPL 10-6: Difference between revisions
Jump to navigation
Jump to search
Line 302: | Line 302: | ||
|41 ||MCO3+NO2+M = PAN ||LPL: 9.70E-29(300/T)^5.6; HPL:9.3E-12(300/T)^1.5; Fc: 0.6 ||JPL06 ||JMAO | |41 ||MCO3+NO2+M = PAN ||LPL: 9.70E-29(300/T)^5.6; HPL:9.3E-12(300/T)^1.5; Fc: 0.6 ||JPL06 ||JMAO | ||
|- | |- | ||
|42 ||PAN = MCO3+NO2 ||9.30E-29 exp(14000/T) ||IUPAC06 || | |42 ||PAN = MCO3+NO2 ||9.30E-29 exp(14000/T) ||IUPAC06 ||equilibrium with the one above | ||
|- | |- | ||
|43 ||MCO3+NO = MO2+NO2+CO2 ||8.10E-12 exp(270/T) ||JPL06 || | |||
|- | |||
|44 ||C2H6+OH = ETO2+H2O ||8.7E-12 exp(-1070/T)||JPL06 || | |||
|- | |||
|45 ||ETO2+NO =ALD2+NO2+HO2 ||2.60E-12 exp(365/T) ||JPL06 ||JMAO | |||
|- | |||
|46 ||C3H8+OH = B3O2 ||K1=7.60e-12 exp(-585/T); K2=5.87*(300/T)^0.64exp(-816/T); K=K1 / (1+K2) ||IUPAC06||JMAO | |||
|- | |||
| ||C3H8+OH = A3O2 ||K1=7.60E-12 exp(-585/T); K2= 0.17*(300/T)^-0.64exp(816/T); K=K1 / (1+K2) ||IUPAC06||JMAO | |||
|- | |||
|47 ||A3O2+NO = NO2 + HO2 + RCHO ||2.90E-12 exp(350/T) ||IUPAC06 ||JMAO | |||
|- | |||
|48 ||PO2+NO = NO2+HO2+CH2O+ALD2 ||2.70E-12 exp(350/T) ||Tyndall 2001 JGR|| | |||
|- | |||
|49 ||ALK4+OH = R4O2 ||9.10E-12 exp(-405/T)||IUPAC06|| | |||
|- | |||
|50 ||R4O2+NO = NO2 +0.32ACET + 0.19MEK +0.18MO2 + 0.27HO2 +0.32ALD2 + 0.13RCHO +0.50A3O2 + 0.18B3O2 + 0.32ETO2 || K* (1-YN) where YN isreturned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.50E00) ||Atkinson 97||A3O2 is 0.05 in the input file(Palmer) | |||
|- | |||
|51 ||R4O2+NO = R4N2 ||K* YN where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.50E00)|| Atkinson97|| | |||
|- | |||
|52 ||ATO2+NO = 0.96NO2 + 0.960CH2O +0.960MCO3 + 0.04R4N2 ||2.80E-12 exp(300/T) ||Tyndall|| | |||
|- | |||
|53 ||KO2+NO = 0.93NO2+ 0.93ALD2 +0.93MCO3 + 0.07R4N2 ||2.70E-12 exp(350/T) ||Tyndall ETO2+NO ||JMAO: there was a typo in last version, no yield of NO. (Bryan Duncan). | |||
|- | |||
|54 ||RIO2 + NO = 0.90NO2 + 0.90HO2 + 0.34IALD + 0.34MVK + 0.22MACR + 0.56CH2O ||2.7E-12 exp(350/T)||MCM3.1 ||DBM(MCM 3.1), this reaction was recently modified to turn off the other channel. | |||
|- | |||
|56 ||IAO2+NO = 0.92HO2+0.61CO+0.17H2+0.33HAC+0.24GLYC +0.53MGLY+0.92NO2 +0.35CH2O+0.08HNO3 ||2.7E-12 exp(350/T) ||Tyndall ETO2+NO|| | |||
|- | |||
| | |||
|} | |} |
Revision as of 00:45, 30 June 2011
This page is intended to incorporate the latest version of JPL chemical kinetics (June 15, 2011) into GC standard chemistry.
Standard Chemistry
Species
Species | Formula | Note |
A3O2 | CH3CH2CH2OO | primary RO2 from C3H8 |
ACET | CH3C(O)CH3 | acetone |
ACTA | CH3C(O)OH | acetic acid |
ALD2 | CH3CHO | acetaldehyde |
ALK4 | RH | ≥C4 alkanes |
ATO2 | CH3C(O)CH2O2 | RO2 from acetone |
B3O2 | CH3CH(OO)CH3 | secondary RO2 from C3H8 |
C2H6 | C2H6 | ethane |
C3H8 | C3H8 | propane |
CH2O | CH2O | formaldehyde |
CH4 | CH4 | methane |
CO | CO | carbon monoxide |
CO2 | CO2 | carbon dioxide |
DRYDEP | generic entry for dry dep | |
EMISSION | generic entry to do emissions | |
EOH | C2H5OH | ethanol |
ETO2 | CH3CH2OO | ethylperoxy radical |
ETP | CH3CH2OOH | ethylhydroperoxide |
GLYC | HOCH2CHO | glycoaldehyde (hydroxyacetaldehyde) |
GLYX | CHOCHO | glyoxal |
H2 | H2 | hydrogen atom |
H2O | H2O | water vapor |
H2O2 | H2O2 | hydrogen peroxide |
HAC | HOCH2C(O)CH3 | hydroxyacetone |
HCOOH | HCOOH | formic acid |
HNO2 | HONO | nitrous acid |
HNO3 | HNO3 | nitric acid |
HNO4 | HNO4 | pernitric acid |
HO2 | HO2 | hydroperoxyl radical |
IALD | HOCH2C(CH3)=CHCHO | hydroxy carbonyl alkenes from isoprene |
IAP | HOCH2C(CH3)(OOH)CH(OH)CHO | peroxide from IAO2 |
INO2 | O2NOCH2C(OO)(CH3)CH=CH2 | RO2 from ISOP+NO3 |
INPN | O2NOCH2C(OOH)(CH3)CH=CH2 | peroxide from INO2 |
ISN2 | CH2=C(CH3)CH(ONO2)CH2OH | isoprene nitrtate |
ISNO3 | RONO2 | stable organic nitrate |
ISNP | HOCH2C(OOH)(CH3)CH(ONO2)CH2OH | peroxide from ISOPNBO2 and ISOPNDO2 |
ISOP | CH2=C(CH3)CH=CH2 | isoprene |
KO2 | RO2 from >3 ketones | RO2 from >3 ketones |
M | for three body reactions | |
MACR | CH2=C(CH3)CHO | methacrolein |
MAN2 | HOCH2C(ONO2)(CH3)CHO | RO2 from MACR+NO3 |
MAO3 | CH2=C(CH3)C(O)OO | peroxyacyl from MVK and MACR |
MAOP | CH2=C(CH3)C(O)OOH | peroxide from MAO3 |
MAP | CH3C(O)OOH | peroxyacetic acid |
MCO3 | CH3C(O)OO | peroxyacetyl radical |
MEK | RC(O)R | >3 ketones |
MGLY | CH3COCHO | methylglyoxyal |
MNO3 | CH3ONO2 | methylnitrate |
MO2 | CH3O2 | methylperoxy radical |
MOH | CH3OH | methanol |
MP | CH3OOH | methylhydroperoxide |
MRO2 | HOCH2C(OO)(CH3)CHO | RO2 from MACR+OH |
MRP | HOCH2C(OOH)(CH3)CHO | peroxide from MRO2 |
MVK | CH2=CHC(O)CH3 | methylvinylketone |
N2 | N2 | nitrogen |
N2O | N2O | nitrous oxide |
N2O5 | N2O5 | dinitrogen pentoxide |
NH2 | NH2 | ammonia radical |
NH3 | NH3 | ammonia |
NO | NO | nitric oxide |
NO2 | NO2 | nitrogen dioxide |
NO3 | NO3 | nitrate radical |
O | O | oxygen atom (3P) |
O1D | O1D | oxygen atom (1D) |
O2 | O2 | molecular oxygen |
O2CH2OH | O2CH2OH | produced by CH2O+HO2 |
O3 | O3 | ozone |
OH | OH | hydroxyl radical |
PAN | CH3C(O)OONO2 | peroxyacetylnitrate |
PMN | CH2=C(CH3)C(O)OONO2 | peroxymethacryloyl nitrate (MPAN) |
PO2 | HOCH2CH(OO)CH3 | RO2 from isoprene |
PP | HOCH2CH(OOH)CH3 | peroxide from PO2 |
PPN | CH3CH2C(O)OONO2 | peroxypropionylnitrate |
PRN1 | O2NOCH2CH(OO)CH3 | RO2 from propene + NO3 |
PRPE | C3H6 | ≥C4 alkenes |
PRPN | O2NOCH2CH(OOH)CH3 | peroxide from PRN1 |
R4N1 | RO2 from R4N2 | RO2 from R4N2 |
R4N2 | RO2NO | ≥C4 alkylnitrates |
R4O2 | RO2 from ALK4 | RO2 from ALK4 |
R4P | peroxide from R4O2 | peroxide from R4O2 |
RA3P | peroxide from A3O2 | peroxide from A3O2 |
RB3P | peroxide from B3O2 | peroxide from B3O2 |
RCHO | CH3CH2CHO | >C2 aldehydes |
RCO3 | CH3CH2C(O)OO | peroxypropionyl radical |
RCOOH | C2H5C(O)OH | >C2 organic acids |
RIO1 | HOCH2C(OO)(CH3)CH=CHOH | RO2 from isoprene oxidation products |
RIO2 | HOCH2C(OO)(CH3)CH=CH2 | RO2 from isoprene |
RIP | HOCH2C(OOH)(CH3)CH=CH2 | peroxide from RIO2 |
ROH | C3H7OH | >C2 alcohols |
RP | CH3CH2C(O)OOH | peroxide from RCO3 |
VRO2 | HOCH2CH(OO)C(O)CH3 | RO2 from MVK+OH |
VRP | HOCH2CH(OOH)C(O)CH3 | peroxide from VRO2 |
DMS | (CH3)2S | dimethylsulfide |
SO2 | SO2 | sulfur dioxide |
SO4 | SO4 | sulfate radical |
MSA | CH4SO3 | methylsulfonic acid |
Reactions
No | Reaction | Rate Constant | Reference | Note |
1 | NO + O3 = NO2 + O2 | 3.00E-12 exp(-1500/T) | JPL06 | |
2 | O3+OH = HO2+O2 | 1.70E-12 exp(-940/T) | JPL06 | |
3 | O3+HO2 = OH+2O2 | 1.00E-14 exp(-490/T) | JPL06 | |
4 | O3+NO2 = O2+NO3 | 1.20E-13 exp(-2450/T) | JPL06 | |
5 | O3+MO2 = CH2O+HO2+2O2 | 2.90E-16 exp(-1000/T) | JPL06 | |
6 | OH+OH = H2O+O3 | 1.8E-12 | JPL06 | JMAO |
7 | OH+OH+M = H2O2 | LPL: 6.9E-31(300/T); HPL: 2.60E-11; Fc:0.6 | JPL06 | JMAO |
8 | OH+HO2 = H2O + O2 | 4.80E-11 exp (250/T) | JPL06 | JMAO |
9 | OH+H2O2 = H2O + HO2 | 1.8E-12 | JPL06 | JMAO |
10 | HO2+NO = OH + NO2 | 3.50E-12 exp(250/T) | JPL06 | |
11 | HO2+HO2 = H2O2 HO2+HO2+M=H2O2 | K1=3.50E-13 exp(430/T); K2=1.70E-33 [M]exp(1000/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T) | JPL06 | JMAO |
12 | OH+H2 = H2O + HO2 | 2.80E-12 exp(-1800/T) | JPL06 | JMAO |
13 | CO+OH = HOCO | LPL: 5.9E-33(300/T)^1.4; HPL:1.1E-12(300/T)^-1.3; Fc:0.6 | JPL06 | JMAO(in calcrate.f) Ignore the intermediate species HOCO and use two 3-body reactions |
HOCO + O2= HO2 + CO2 | 2.00E-12 | JPL06 | ||
CO+OH=HO2+CO2 (different formula) | LPL: 1.5E-13(300/T)^-0.6; HPL:2.10E9(300/T)^-6.1; Fc:0.6 | JPL06 | ||
14 | OH+ CH4 = MO2+H2O | 2.45E-12exp(–1775/T) | JPL06 | JMAO:could also be 2.8E-14T^0.667 exp(–1575/T) |
15 | MO2+NO =CH2O+HO2+NO2 | 2.80E-12 exp(300/T) | JPL06 | |
16 | MO2+HO2 = MP+O2 | 4.1E-13 exp(750/T) | JPL06 | JMAO |
17 | MO2+HO2 = CH2O + O2 | N/A | JPL06(P1-59,D35) | JMAO:Not recommended in JPL06 |
18 | MO2+MO2 =MOH+CH2O+O2 | K1=9.5E-14 exp(390/T); K2=2.62E+1 exp(-1130/T); K=K1 / (1+K2) | Tyndall 2001 | |
19 | MO2+MO2 = 2CH2O + 2HO2 | K1=9.5E-14 exp(390/T); K2=4.00E-02exp(1130/T); K=K1 / (1+K2) | Tyndall 2001 | |
20 | MP+OH = MO2+H2O | 2.66E-12 exp(200/T) | JPL06 | |
21 | MP+OH = CH2O+OH+H2O | 1.14E-12 exp(200/T) | JPL06 | |
22 | CH2O+OH = HCO +H2O | 5.5E-12 exp(125/T) | JPL06 | JMAO(use the first rate) |
HCO + O2 = CO + HO2 | 5.2E-12 | JPL06 | ||
23 | OH + NO2 + M = HONO2 | LPL: 1.80E-30(300/T)^3; HPL:2.80E-11(300/T)^0; Fc:0.6 | JPL06 | JMAO: Ignore the HOONO channel for now. |
OH + NO2 + M=HOONO | LPL:9.10E-32(300/T)^3.9 ; HPL:4.20E-11(300/T)^0.5; Fc:0.6 | JPL06 | ||
24 | HNO3+OH = H2O+NO3 | K0=2.41E-14 exp(460/T); K2=2.69E-17exp(2199/T); K3=6.51E-34exp(1335/T); K = K0 + K3[M] / (1 + K3[M]/K2) | JPL06 | |
25 | NO+OH+M = HNO2+M | LPL: 7.00E-31(300/T)^2.6; HPL: 3.60E-11(300/T)^0.1; Fc: 0.6 | JPL06 | |
26 | HNO2+OH = H2O+NO2 | 1.80E-11 exp(-390/T) | JPL06 | |
27 | HO2+NO2+M = HNO4+M | LPL: 2.0E-31(300/T)^3.4; HPL:2.9E-12(300/T)^1.1; Fc= 0.6 | JPL06 | JMAO |
28 | HNO4+M = HO2+NO2 | LPL: 9.52E-5(300/T)^3.4* exp(-10900/T); HPL:1.38E+15*(300/T)^1.1*exp(-10900/T); Fc=0.6 | JPL06 | JMAO:K=forward rxn/Keq; Keq=2.1E-27exp(10900/T); |
29 | HNO4+OH = H2O+NO2+O2 | 1.30E-12 exp(380/T) | JPL06 | |
30 | NO+NO3=2NO2 | 1.50E-11 exp(170/T) | JPL06 | |
31 | HO2+NO3 = OH+NO2+O2 | 3.50E-12 | JPL06 | |
32 | OH+NO3 = HO2+NO2 | 2.20E-11 | JPL06 | |
33 | NO2+NO3+M = N2O5+M | LPL: 2.0E-30(300/T)^4.4; HPL:1.4E-12(300/T)^0.7; Fc=0.6 | JPL06 | |
34 | N2O5+M = NO2+NO3 | LPL: 7.4E-4(300/T)^4.4* exp(-11000/T); HPL:5.18E+14*(300/T)^0.7*exp(-11000/T); Fc=0.6 | JPL06 | JMAO :K=forwardrxn/ Keq; Keq = 2.70E-27exp(11000/T); |
35 | HCOOH+OH =H2O+CO2+HO2 | 4.00E-13 | JPL06 | |
36 | MOH+OH = HO2+CH2O | 2.9E-12 exp(-345/T) | JPL06 | |
37 | NO2+NO3 = NO+NO2+O2 | 4.50E-14 exp(-1260/T) | JPL06 | |
38 | NO3+CH2O = HNO3+HO2+CO | 5.80E-16 | JPL06 | |
39 | ALD2 + OH=H2O + 0.95 MCO3 + 0.05 CH2O + 0.05 CO + 0.05 HO2 | 4.4 E-12exp(365/T) | IUPAC06 | DBM (cannot find this reaction from JPL06) |
40 | ALD2+NO3 = HNO3+MCO3 | 1.40E-12 exp(-1900/T) | JPL06 | JMAO |
41 | MCO3+NO2+M = PAN | LPL: 9.70E-29(300/T)^5.6; HPL:9.3E-12(300/T)^1.5; Fc: 0.6 | JPL06 | JMAO |
42 | PAN = MCO3+NO2 | 9.30E-29 exp(14000/T) | IUPAC06 | equilibrium with the one above |
43 | MCO3+NO = MO2+NO2+CO2 | 8.10E-12 exp(270/T) | JPL06 | |
44 | C2H6+OH = ETO2+H2O | 8.7E-12 exp(-1070/T) | JPL06 | |
45 | ETO2+NO =ALD2+NO2+HO2 | 2.60E-12 exp(365/T) | JPL06 | JMAO |
46 | C3H8+OH = B3O2 | K1=7.60e-12 exp(-585/T); K2=5.87*(300/T)^0.64exp(-816/T); K=K1 / (1+K2) | IUPAC06 | JMAO |
C3H8+OH = A3O2 | K1=7.60E-12 exp(-585/T); K2= 0.17*(300/T)^-0.64exp(816/T); K=K1 / (1+K2) | IUPAC06 | JMAO | |
47 | A3O2+NO = NO2 + HO2 + RCHO | 2.90E-12 exp(350/T) | IUPAC06 | JMAO |
48 | PO2+NO = NO2+HO2+CH2O+ALD2 | 2.70E-12 exp(350/T) | Tyndall 2001 JGR | |
49 | ALK4+OH = R4O2 | 9.10E-12 exp(-405/T) | IUPAC06 | |
50 | R4O2+NO = NO2 +0.32ACET + 0.19MEK +0.18MO2 + 0.27HO2 +0.32ALD2 + 0.13RCHO +0.50A3O2 + 0.18B3O2 + 0.32ETO2 | K* (1-YN) where YN isreturned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.50E00) | Atkinson 97 | A3O2 is 0.05 in the input file(Palmer) |
51 | R4O2+NO = R4N2 | K* YN where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.50E00) | Atkinson97 | |
52 | ATO2+NO = 0.96NO2 + 0.960CH2O +0.960MCO3 + 0.04R4N2 | 2.80E-12 exp(300/T) | Tyndall | |
53 | KO2+NO = 0.93NO2+ 0.93ALD2 +0.93MCO3 + 0.07R4N2 | 2.70E-12 exp(350/T) | Tyndall ETO2+NO | JMAO: there was a typo in last version, no yield of NO. (Bryan Duncan). |
54 | RIO2 + NO = 0.90NO2 + 0.90HO2 + 0.34IALD + 0.34MVK + 0.22MACR + 0.56CH2O | 2.7E-12 exp(350/T) | MCM3.1 | DBM(MCM 3.1), this reaction was recently modified to turn off the other channel. |
56 | IAO2+NO = 0.92HO2+0.61CO+0.17H2+0.33HAC+0.24GLYC +0.53MGLY+0.92NO2 +0.35CH2O+0.08HNO3 | 2.7E-12 exp(350/T) | Tyndall ETO2+NO | |