Particulate matter in GEOS-Chem: Difference between revisions

From Geos-chem
Jump to navigation Jump to search
Line 57: Line 57:
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 19:11, 3 November 2021 (UTC)
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 19:11, 3 November 2021 (UTC)


== PM2.5 diagnostic as implemented in GEOS-Chem ==
== Definition of PM10 used in GEOS-Chem ==
 
In GEOS-Chem 13.3.1 and later versions, PM10 is computed according to the following formula:
 
PM10 = PM2.5  
      + ( 0.7 * DST2 )
      + DST3
      + ( 0.9 * DST4 )
 
== PM diagnostic as implemented in GEOS-Chem ==
 
The PM2.5 and PM10 diagnostics belong to the [[History_collections_for_aerosols#The_AerosolMass_collection|the AerosolMass collection]] in the GEOS-Chem History diagnotics). They are computed according to the code below.


=== In GEOS-Chem 13.3.1 and later versions ===
         ! Particulate matter < 2.5um [kg/m3]
         ! Particulate matter < 2.5um [kg/m3]
         PM25(I,J,L) = NH4(I,J,L)        * SIA_GROWTH + &
         PM25(I,J,L) = NH4(I,J,L)        * SIA_GROWTH + &
Line 118: Line 127:
                       ( T(I,J,L)  / 298.0_fp    )
                       ( T(I,J,L)  / 298.0_fp    )


=== Prior to GEOS-Chem 13.3.1 ===
Also note that there are some calculations that were not included in the definitions above.  These are:
 
The PM2.5 diagnostic (which belongs to the [[History_collections_for_aerosols#The_AerosolMass_collection|the AerosolMass collection]] in the GEOS-Chem History diagnotics) is computed according to the code below.
 
        !==============================================================
        ! P A R T I C U L A T E  M A T T E R
        !
        ! Compute PM2.5 concentration [kg/m3]
        !
        ! PM25 = 1.33 (NH4 + NIT  + SO4) + BCPI + BCPO +
        !        2.10 (OCPO + 1.16 OCPI) + 1.16 SOA*  +
        !        DST1 + 0.38 DST2 + 1.86 SALA
        !
        !  * If using simple  SOA, SOA = SOAS;
        !    If using complex SOA, SOA = TSOA + ASOA + ISOAAQ
        !
        ! NOTES:
        ! - We apply growth factors at 35% RH (computed above):
        !    1.33 for SO4, NIT, and NH4
        !    1.16 for OCPI and SOA
        !    1.86 for SALA
        ! - Ratio of OM/OC = 2.1 is applied to OCPI and OCPO above
        ! - Aerosol WG recommends including 38% of DST2 in PM2.5
        ! - Use either simple SOA or complex SOA in PM2.5 calculation.
        !  By default simple SOA will be used.
        !
        ! %%% IMPORTANT %%%
        ! Note that if complex SOA is used then PM2.5 includes all
        ! the SOA formed in both the Marais et al. and Pye et al.
        ! schemes and may include some double-counting of isoprene SOA.
        ! (Aerosol WG)
        !==============================================================
   
        ! Units: [kg/m3]
        PM25(I,J,L) = NH4(I,J,L)        * SIA_GROWTH + &
                      NIT(I,J,L)        * SIA_GROWTH + &
                      SO4(I,J,L)        * SIA_GROWTH + &
                      BCPI(I,J,L)                    + &
                      BCPO(I,J,L)                    + &
                      OCPO(I,J,L)                    + &
                      OCPI(I,J,L)      * ORG_GROWTH + &
                      SALA(I,J,L)      * SSA_GROWTH + &
                      SOILDUST(I,J,L,1)              + & ! DST1
                      SOILDUST(I,J,L,2)              + & ! DST1
                      SOILDUST(I,J,L,3)              + & ! DST1
                      SOILDUST(I,J,L,4)              + & ! DST1
                      SOILDUST(I,J,L,5) * 0.38          ! 38% of DST2
        ! Include either simple SOA (default) or Complex SOA in
        ! PM2.5 calculation.  In simulations where both Simple SOA and
        ! Complex SOA species are carried (i.e. "benchmark"), then
        ! only the Simple SOA will be added to PM2.5, in order to avoid
        ! double-counting. (bmy, 5/11/18)
        IF ( Is_SimpleSOA ) THEN
          PM25(I,J,L) = PM25(I,J,L) + SOAS(I,J,L) * ORG_GROWTH
        ELSEIF ( Is_ComplexSOA ) THEN
          PM25(I,J,L) = PM25(I,J,L)                + &
                        TSOA(I,J,L)  * ORG_GROWTH + &
                        ASOA(I,J,L)  * ORG_GROWTH + &
                        ISOAAQ(I,J,L) * ORG_GROWTH    ! Includes SOAGX
          ! Need to add OPOA to PM2.5 for complexSOA_SVPOA simulations
          ! -- Maggie Marvin (15 Jul 2020)
          IF ( Is_OPOA ) THEN
              PM25(I,J,L) = PM25(I,J,L)            + &
                            OPOA(I,J,L) * ORG_GROWTH
          ENDIF
        ENDIF
        ! Apply STP correction factor based on ideal gas law
        PM25(I,J,L) = PM25(I,J,L) * ( 1013.25_fp / PMID(I,J,L) ) * &
                      ( T(I,J,L)  / 298.0_fp    )


=== Avoid double-counting of ISOAAQ species ===
=== Avoid double-counting of ISOAAQ species ===
Line 212: Line 150:
         PM25(I,J,L) = PM25(I,J,L) * (1013.25d0 / AIRPRESS(I,J,L)) * (AIRTEMP(I,J,L) / 298)
         PM25(I,J,L) = PM25(I,J,L) * (1013.25d0 / AIRPRESS(I,J,L)) * (AIRTEMP(I,J,L) / 298)


This has since been added to the PM2.5 diagnostic in GEOS-Chem ([[PM2.5 diagnostics as implemented in GEOS-Chem|see code above]]).
This has since been added to the PM2.5 and PM10 diagnostics in GEOS-Chem ([[PM2.5 diagnostics as implemented in GEOS-Chem|see code above]]).


== Anthropogenic PM2.5 dust source in GEOS-Chem ==
== Anthropogenic PM2.5 dust source in GEOS-Chem ==

Revision as of 19:29, 3 November 2021

On this page we provide information about how to compute particulate matter concentrations from GEOS-Chem output.

Definition of PM2.5 used in GEOS-Chem

Below is the definition of PM2.5 used in GEOS-Chem and approved by the Aerosols Working Group.

Scale factor Multiplies these species Value at 35% RH Value at 50% RH
SIA_GROWTH SO4, NIT, NH4 1.10 1.35
ORG_GROWTH OCPI, SOA 1.05 1.07
SSA_GROWTH SALA 1.86 1.86

The OA changes at both RH, and the SIA change at 50% RH are straightforward changes to yield consistency between with the current Kappa-Kohler hygroscopicity parameterization in GEOS-Chem based on Latimer and Martin (2019).

The SIA recommendation at 35% RH is less certain since it depends on the efflorescence RH of the SIA in the aerosol mixture under the variable conditions of the instruments, collection media, and laboratories involved. Given knowledge gaps about the aerosol phase at low RH, the proposed growth factor of 1.1 assumes that half of the particles are aqueous (growth factor of 1.19 for Kappa-Kohler) and the other half are crystalline (growth factor of unity).

These growth factors are calculated using the change in radius between different RH. Essentially, the change in radius between the dry (i.e. 0% RH) and wet (35% or 50% RH) aerosol is treated as a shell of water for the purposes of calculating the additional mass associated with the wet particle. Under this condition, it can be shown that:

GrowthFactor = 1 + [{(radiusAtRH_wet / radiusAtRH_dry)^3 - 1} x (Density_Water / Density_DrySpecies)]

The DST2 bin includes aerosols with diameter both smaller and larger than 2.5 um. Lengthy discussion with Duncan Fairlie, Aaron van Donkelaar, Colette Heald, Jeff Pierce and Noelle Selin led to the conclusion that 38% of the DST2 bin should be included in the calculation of PM2.5.

In summary, PM2.5 at 35% RH should be computed as:

PM25 = (NH4 + NIT  + SO4) * 1.10
     + BCPI 
     + BCPO 
     + (OCPO + (OCPI * 1.05)) * (OM/OC ratio)  # OM/OC ratio = 2.1 by default
     + DST1 
     + DST2 * 0.30                             # F. Yu suggests 30% of DST2 (Nov 2011); prior value was 38% of DST2
     + SALA * 1.86
     + SOA  * 1.05

The OM/OC ratio is by default set to a constant value of 2.1. For users who seek more information on the seasonal and spatial variation of OM/OC in the lower troposphere, we provide the option to use the seasonal gridded dataset developed by Philip et al. (2014). This dataset has some uncertainty, but offers more information than a global-mean OM/OC ratio in regions where primary organic aerosols have a large fossil fuel source.

--Bob Yantosca (talk) 19:11, 3 November 2021 (UTC)

Definition of PM10 used in GEOS-Chem

In GEOS-Chem 13.3.1 and later versions, PM10 is computed according to the following formula:

PM10 = PM2.5 
     + ( 0.7 * DST2 )
     + DST3
     + ( 0.9 * DST4 ) 

PM diagnostic as implemented in GEOS-Chem

The PM2.5 and PM10 diagnostics belong to the the AerosolMass collection in the GEOS-Chem History diagnotics). They are computed according to the code below.

       ! Particulate matter < 2.5um [kg/m3]
       PM25(I,J,L) = NH4(I,J,L)        * SIA_GROWTH + &
                     NIT(I,J,L)        * SIA_GROWTH + &
                     SO4(I,J,L)        * SIA_GROWTH + &
                     BCPI(I,J,L)                    + &
                     BCPO(I,J,L)                    + &
                     OCPO(I,J,L)                    + &
                     OCPI(I,J,L)       * ORG_GROWTH + &
                     SALA(I,J,L)       * SSA_GROWTH + &
                     SOILDUST(I,J,L,1)              + &   ! + 100% of DST1
                     SOILDUST(I,J,L,2)              + &   !
                     SOILDUST(I,J,L,3)              + &   ! 
                     SOILDUST(I,J,L,4)              + &   ! 
                     SOILDUST(I,J,L,5) * 0.3_fp           ! + 30%  of DST2

       ! Particulate matter < 10um [kg/m3]
       PM10(I,J,L) = PM25(I,J,L) +                    &   ! PM2.5
                     SOILDUST(I,J,L,5) * 0.7_fp     + &   ! + 70%  of DST2
                     SOILDUST(I,J,L,6)              + &   ! + 100% of DST3
                     SOILDUST(I,J,L,7) * 0.9_fp     + &   ! + 90%  of DST4
                     SALC(I,J,L)       * SSA_GROWTH

       ! Include either simple SOA (default) or Complex SOA in
       ! PM2.5 calculation.  In simulations where both Simple SOA and
       ! Complex SOA species are carried (i.e. "benchmark"), then
       ! only the Simple SOA will be added to PM2.5, in order to avoid
       ! double-counting. (bmy, 5/11/18)
       IF ( Is_SimpleSOA ) THEN
          PM25(I,J,L) = PM25(I,J,L) + SOAS(I,J,L) * ORG_GROWTH
          PM10(I,J,L) = PM10(I,J,L) + SOAS(I,J,L) * ORG_GROWTH

       ELSE IF ( Is_ComplexSOA ) THEN 
          PM25(I,J,L) = PM25(I,J,L)                 + &
                        TSOA(I,J,L)   * ORG_GROWTH  + &
                        ASOA(I,J,L)   * ORG_GROWTH  + &
                        ISOAAQ(I,J,L) * ORG_GROWTH        ! Includes SOAGX

          PM10(I,J,L) = PM10(I,J,L)                 + &  
                        TSOA(I,J,L)   * ORG_GROWTH  + &
                        ASOA(I,J,L)   * ORG_GROWTH  + &
                        ISOAAQ(I,J,L) * ORG_GROWTH        ! Includes SOAGX

          ! Need to add OPOA to PM2.5 for complexSOA_SVPOA simulations
          ! -- Maggie Marvin (15 Jul 2020)
          IF ( Is_OPOA ) THEN
             PM25(I,J,L) = PM25(I,J,L) + ( OPOA(I,J,L) * ORG_GROWTH )
             PM10(I,J,L) = PM10(I,J,L) + ( OPOA(I,J,L) * ORG_GROWTH )
          ENDIF
       ENDIF

       ! Apply STP correction factor based on ideal gas law
       PM25(I,J,L) = PM25(I,J,L) * ( 1013.25_fp / PMID(I,J,L) ) * &
                     ( T(I,J,L)   / 298.0_fp    )

       PM10(I,J,L) = PM10(I,J,L) * ( 1013.25_fp / PMID(I,J,L) ) * &
                     ( T(I,J,L)   / 298.0_fp    )

Also note that there are some calculations that were not included in the definitions above. These are:

Avoid double-counting of ISOAAQ species

Jenny Fisher rightly pointed out that the PM2.5 diagnostic was erroneously including the ISOAAQ species in the accounting of PM2.5 when the Simple SOA option was used. After discussion with the Aerosols Working Group, we modified the PM2.5 diagnostic (in routine aerosol_mod.F90) accordingly.

To avoid double-counting of SOA, we do the following:

  • When the Complex SOA option is selected, we add TSOA + ASOA + ISOAAQ to the PM2.5 and AOD diagnostics instead the simple SOA species SOAS.
  • Otherwise, we add SOAS to the PM2.5 and AOD diagnostics instead of TSOA + ASOA + ISOAAQ.

NOTE: The GEOS-Chem benchmark simulations carry both Simple SOA and Complex SOA species, but only the Simple SOA species (SOAS) is included in diagnostic output.

Save out PM2.5 diagnostic at STP conditions

Aaron van Donkelaar wrote:

As currently implemented [in GEOS-Chem v11-01, the PM2.5 diagnostic outputs PM2.5 at ambient conditions. While this is not technically an error, most PM2.5 monitors measure at STP conditions which will cause disagreement during comparison with observations and inconsistency during application of any health response curves (generally determined from the STP observations).
As a result, I’d recommend applying an STP correction factor based on ideal gas law after PM2.5 is calculated in aerosol_mod.F:

        PM25(I,J,L) = PM25(I,J,L) * (1013.25d0 / AIRPRESS(I,J,L)) * (AIRTEMP(I,J,L) / 298)

This has since been added to the PM2.5 and PM10 diagnostics in GEOS-Chem (see code above).

Anthropogenic PM2.5 dust source in GEOS-Chem

This update was included in GEOS-Chem 12.1.0, which was released on 26 Nov 2018.

Sajeev Philip and coauthors have added a new PM2.5 dust emission inventory into GEOS-Chem, termed as Anthropogenic Fugitive, Combustion and Industrial Dust (AFCID). For information on this inventory, please see our Mineral dust aerosols wiki page.

--Bob Yantosca (talk) 22:27, 11 January 2019 (UTC)

PM10

At present there is no PM10 diagnostic in GEOS-Chem. We welcome GEOS-Chem User Community to assist us with implementing this diagnostic.

--Bob Yantosca (talk) 15:02, 22 February 2021 (UTC)