GEOS-Chem Adjoint Model: Difference between revisions
Line 290: | Line 290: | ||
|[mailto:daven.henze@colorado.edu Nicolas Bousserez] | |[mailto:daven.henze@colorado.edu Nicolas Bousserez] | ||
|- | |- | ||
| | |Seoul National University | ||
| | |Sensitivity and Inverse Modeling of Air Pollution in Korea | ||
|[mailto:hyungmin.lee@colorado.edu Hyung-Min Lee] | |[mailto:hyungmin.lee@colorado.edu Hyung-Min Lee] | ||
|- | |- | ||
Line 306: | Line 297: | ||
|Constraints on Aerosol Sources | |Constraints on Aerosol Sources | ||
|[mailto:zhen.qu@colorado.edu Zhen Qu] | |[mailto:zhen.qu@colorado.edu Zhen Qu] | ||
|- | |- | ||
|Harvard | |Harvard | ||
|Methane | |Methane | ||
|Bram Maasakkers, maasakkers [at] seas.harvard.edu | |Bram Maasakkers, maasakkers [at] seas.harvard.edu | ||
|- | |- | ||
|Harvard | |Harvard | ||
Line 354: | Line 337: | ||
| TES ozone assimilation/attribution of ozone radiative forcing | | TES ozone assimilation/attribution of ozone radiative forcing | ||
|[mailto:kevin.bowman@jpl.nasa.gov Kevin Bowman] | |[mailto:kevin.bowman@jpl.nasa.gov Kevin Bowman] | ||
|- | |- | ||
|Peking University | |Peking University | ||
|Satellite constraints on VOC emissions | |Satellite constraints on VOC emissions | ||
|[mailto:tmfu@pku.edu.cn May Fu] | |[mailto:tmfu@pku.edu.cn May Fu] | ||
|- | |- | ||
|Purdue University | |Purdue University | ||
Line 375: | Line 350: | ||
|[mailto:tan80@purdue.edu Zeli Tan] | |[mailto:tan80@purdue.edu Zeli Tan] | ||
|- | |- | ||
| | |NCAR | ||
|Adjoint analysis for carbon monoxide and ozone | |Adjoint analysis for carbon monoxide and ozone | ||
|[mailto: | |[mailto:zhejiang@ucar.edu Zhe Jiang] | ||
|- | |- | ||
|University of Toronto | |University of Toronto | ||
Line 387: | Line 358: | ||
|[mailto:cwhaley@atmosp.physics.utoronto.ca Cynthia Whaley] | |[mailto:cwhaley@atmosp.physics.utoronto.ca Cynthia Whaley] | ||
|- | |- | ||
| | |Drexel | ||
|ISORROPIA adjoint development; NH3 assimilation; cloud droplet sensitivities | |ISORROPIA adjoint development; NH3 assimilation; cloud droplet sensitivities | ||
|[mailto: | |[mailto:sc3623@drexel.edu Shannon Capps] | ||
|- | |- | ||
|Peking University | |Peking University | ||
Line 398: | Line 369: | ||
|Sensitivity of ozone and adjoint analysis of CO over Australasia. | |Sensitivity of ozone and adjoint analysis of CO over Australasia. | ||
|[mailto:rb864@uowmail.edu.au Rebecca Buchholz] | |[mailto:rb864@uowmail.edu.au Rebecca Buchholz] | ||
|- | |- | ||
|University of Wisconsin | |University of Wisconsin | ||
|CO2 assimilation and forecast & Temperature profile retrieval | |CO2 assimilation and forecast & Temperature profile retrieval | ||
|[mailto:wenguang.bai@ssec.wisc.edu Wenguang Bai] | |[mailto:wenguang.bai@ssec.wisc.edu Wenguang Bai] | ||
|- | |- | ||
|Anyang University | |Anyang University |
Revision as of 01:52, 28 April 2017
Adjoint Working Group
Contact information
Adjoint Model Scientist | Daven Henze |
---|---|
Adjoint Model and Data Assimilation Working Group Co-Chairs |
|
GEOS-Chem Adjoint support team | |
Adjoint Working Group email list | geos-chem-adjoint [at] g.harvard.edu |
To subscribe to email list | Either
Or
|
To unsubscribe from email list | Either
Or
|
--Bob Y. (talk) 15:54, 21 August 2015 (UTC)
Historical Development
Original work on the adjoint of GEOS-Chem v6 began in 2003, focusing on the adjoint of the offline aerosol simulation. By 2005, the adjoint was expanded to include a tagged CO simulation and a full chemistry simulation; an adjoint of GEOS-Chem v7 was also developed in the following years. Each of these branches of the adjoint code were been constructed in a hybrid fashion using a combination of automatic differentiation software (TAMC, KPP) and manual coding of both discrete and continuous adjoints. They shared many common elements yet had unique features for different applications.
During the summer of 2009, the existing branches were merged and updated to bring the adjoint into alignment with the latest release of GEOS-Chem, v8-02-01. This merged adjoint model is now the standard adjoint code into which all further development efforts will be placed.
Forward Model Code
The forward model on which the adjoint is based originally corresponded to GEOS-Chem v8-02-01. It was subsequently updated as follows:
- KPP solver for gas-phase chemistry (as in GCv8-02-03)
- Implement Bond 2007 BC/OC emissions (as in GCv8-02-02)
- Apply bug fixes from GCv8-02-02 listed here
- Apply bug fixes from GCv8-02-03 listed here
- Apply bug fixes from GCv8-02-04 listed here
All bug fixes and model updates were previous listed at the top of inverse_driver.f. We have now switched to documenting the code development cycle here in the wiki, see the following section.
Code Versions, Bug Fixes and Developments
Current GEOS-Chem adjoint version released
- GEOS-Chem_Adjoint_v35 (You will download this version when you check out.)
Previous GEOS-Chem adjoint versions released
Summary of Main Adjoint Code Supported Features
Features
- Meteorological fields
- GEOS-3 needs testing
- GEOS-4
- GEOS-5
- model resolution
- 4 x 5
- 2 x 2.5
- Nested Asia and NA
- Forward model processes
- convection
- advection
- PBL mixing
- dry deposition
- wet deposition
- strat / trop exchange with LINOZ and new GMI strat chem (v9-01-03)
- NOy up fluxes (now replaced with new GMI strat chem)
- aerosols
- inorganic aerosol thermodynamics with RPMARES
- inorganic aerosol thermodynamics with ISORROPIA in progress
- sulfate chemistry
- BC
- SOA, Dust, sea salt needs doing
- aerosol surface area feedbacks needs updating
- aerosol optical feedbacks needs doing
- emissions
- all standard emissions included
- Simulation modes
- full chemistry
- tagged CO
- tagged Ox
- CH4
- offline aerosols (for BC and dust only)
- CO2
- Observational Operators
- MOPITT CO column
- SCIAMACHY CO column
- AIRS CO column
- IMPROVE BC
- CASTNet (NH4+) needs updating
- GOME / SCIAMACHY NO2 column needs updating
- using KNMI retrieval (Henze)
- using Dalhousie retrieval (Shim)
- SCIAMACHY/OMI NO2
- using Dalhousie retrieval (Bousserez, Padmanabhan)
- TES NH3
- TES O3
- GOSAT CO2
- MLS O3 and TES CO2 in progress
- Control parameters
- Initial Conditions scaling factors (linear or log)
- Emissions scaling factors (linear or log)
- NH3, primary BC/OC, SO2: anthropogenic, natural, bioburn, biomass, ship
- NOx: soil, aircraft, anthropogenic, biofuel, bioburn
- Lightning NOx: injection height, yield in progress
- all other gas-phase tracers: anthropogenic, biofuel, bioburn
- Adjoint sensitivities
- w.r.t. all implemented control parameters
- w.r.t Reaction Rate Parameters
- w.r.t all emissions
- of AQ attainment metrics needs updating
- of spatiotemporally averaged species concentrations (e.g., arctic O3)
- Other
- Inverse Hessian approximation
- off-diagonal covariance matrices needs updating
- 3D-Var needs updating
Features may be qualified as:
- needs testing: an implemented feature that we haven't fully used yet
- needs updating: a feature developed with a previous branch that has yet to be updated to GEOS-Chem v8 and the merged adjoint
- needs doing: a feature nobody has tackled the adjoint of yet
- in progress: a feature currently under development
- in pipeline: a feature which has been submitted and awaiting integration into the CVS repository
Primary code developers
Monika Kopacz, Kumaresh Singh, Changsub Shim, Daven Henze
Adjoint model lead scientist
Daven Henze
Resources
User's guide
A User's Guide v35 is available. User's Guide v35
Previous version v32-v33 available at User's Guide v32
Quick Introduction to GitLab is available at GitLab Tutorial
The forward version of the code is based on v9-02 here is the User's Guide
Code flowchart
Meemong Lee has created a detailed flowchart of the inverse model code structure. http://adjoint.colorado.edu/~daven/gcadj_std/flowchart.pdf
Plotting tools
Some IDL and MATLAB routines for plotting benchmark results. http://adjoint.colorado.edu/~daven/gcadj_std/tools.tar.gz
Background papers and presentations
Several articles and presentations (including a GC adjoint modeling clinic overview from IGC5) providing background information about adjoints. http://adjoint.colorado.edu/~daven/gcadj_std/adj_articles.tar.gz
Distribution and Use
Code for the adjoint is distributed through GITLAB, a web interface connected to a GIT server located at adjoint.colorado.edu. You can access GITLAB at http://adjoint.colorado.edu:8080 after your account is created. Here is our Quick Start Guide.
Even if your office mate has a copy of the code, the best way to obtain the model is to get an account for yourself and download a version from the repository. So please do not copy code directly from others or pass the code along to third parties. This vastly helps with tracking developments and keeping up with model updates.
Use of the adjoint model code follows standard practice for GEOS-Chem. It is expected that any developments that come of individual applications based on this community model will eventually be given back to the community by incorporation of new developments into the standard adjoint code. New development should be submitted to Daven Henze for inclusion in the standard adjoint model code.
Using GIT gives the users the ability to change the code and commit their changes without affecting the main repository hosted at adjoint.colorado.edu. Users can work with their modified versions of the code and even create their own tags because GIT acts as a local repository. When ready to submit your update to the community just create a new branch with your modifications. Send an email Daven Henze explaining your contributions and we'll do our best to include them as soon as possible.
Quick guide to GIT
As of version 34 we started using git versioning system and the GitLab web interface. We prepared GitLab Tutorial to help users get used to the web interface and git. We recommend first taking a look at GIT manual to get a general feel for how this tools works (e.g., GIT Documentation or GIT Manual Page).
Useful GIT commands:
Initial download:
git clone ssh://git@adjoint.colorado.edu/yanko.davila/gcadj_std.git
Status of project vs the current repository:
git status
Check difference of files (differences have colors for easy reading)
git diff --color <wildcard> [<wildcard>] <path>/foo_mod.f
Checkout specific version
git checkout <wildcard>
Replacing a file with the newest version from the repository:
git checkout origin/master -- <path>/foo_mod.f
Merging changes in a file: (Reference)
git merge -m <wildcard>
Comitting
git commit -a
Tagging a version
git tag -a TAGNAME
Deleting a tag
git tag -d TAGNAME git push origin :refs/tags/TAGNAME
Saving changes to repository
git push
Saving tags to repository
git push --tags
List the history of a file:
git log -- <path>/foo_mod.f
Add a file to the repository
git add <file_name>
Delete a file from the repository
git rm <file_name>
Determine current version
git show HEAD [ | grep commit]
Download remote changes, rewind your local branch, then replays all your changes over the top of your current branch one by one, until you’re all up to date.
git pull --rebase
There are several wildcards that you can use on git for example:
"origin/master" - Latest version on the repository
"HEAD" - Latest version as of your last download
"v33i" - Specific TAG, find all tag names on GitLab
"32d5c926e" - Specific COMMIT, find all commit numbers on GitLab
Here is the foward model documentation of git.
Backward compatibility (CVS)
For people using old version of the code we still have active our CVS repository, but note that the latest version on CVS is v33i-patch2. Here you can find our Quick Guide to CVS
Crediting GEOS-Chem adjoint developers
We aim to make distribution of adjoint model code as immediate as possible. A consequence is that many features may not yet be publicly documented. Therefore, giving code developers due credit is of utmost importance.
Authors of new additions to the standard code should be offered co-authorship on the first round of presentations and publications to come of their development. Features currently falling in this category and their developers are:
- (v35j) MOPITT CO Observation operator. Zhe Jiang; Yanko Davila, CU Boulder.
- (v35j) OMI SO2, OMI NO2 and TES O3 Observation operators. Martin Keller, U Toronto; Yi Wang, UNL; Yanko Davila, CU Boulder.
- (v35) HTAP Emissions Inventory. Kateryna Lapina, Daven Henze and Yanko Davila, CU Boulder.
- (v35) NEI2008 Emissions Inventory. Katie Travis; Fabien Paulot, Harvard; Hyungmin Lee, and Daven Henze, CU Boulder.
- (v35) Deposition based cost function. Fabien Paulot, Harvard; Daven Henze and Yanko Davila, CU Boulder.
- (v34) Implementation of the sensitivity to reaction rate constants. Developers: Hyungmin Lee, CU Boulder; Thomas ; Fabien Paulot (Harvard); Daven Henze, CU Boulder and Yanko Davila, CU Boulder.
- (v34) ISOROPIA II adjoint. Developer: Shannon Capps, EPA.
- (v34) Off-diagonal covariance error matrices implementation. Developers: Nicolas Bousserez, CU Boulder; Kumaresh; Yanko Davila, CU Boulder.
- (v32) Nested full chemistry adjoint. Developers: Zhe Jiang, University of Toronto; Daven Henze, CU Boulder.
Citation of the appropriate journal articles for mature developments is also encouraged, as well as considering aspects of co-authorship for the forward model.
Overall, if you have any questions about authorship, even for a conference presentation, please contact Daven Henze.
Current GEOS-Chem Adjoint Research Projects (please add yours!)
User Group | Description | Contact Person |
---|---|---|
CU Boulder | Aerosol precursors, CO2, O3; general adjoint code maintenance | Daven Henze |
CU Boulder | Inverse modeling/optimization: variational source inversions, posterior error estimates in high-dimension; general adjoint code maintenance | Nicolas Bousserez |
Seoul National University | Sensitivity and Inverse Modeling of Air Pollution in Korea | Hyung-Min Lee |
CU Boulder | Constraints on Aerosol Sources | Zhen Qu |
Harvard | Methane | Bram Maasakkers, maasakkers [at] seas.harvard.edu |
Harvard | Harvard Emissions Component (HEMCO) | Christoph Keller |
Harvard | VOC emissions in N.A. constrained by satellite HCHO | Jennifer Kaiser |
Harvard | Tradeoffs between air quality and economic outcomes | Sebastian D Eastham |
MIT | Air quality, aircraft emissions and sensitivities | Irene Dedoussi |
Dalhousie University | Mass balance vs adjoint approaches for top-down constraints on NOx emissions | Matthew Cooper |
Dalhousie University | Trends in OC and BC emissions over the US | Nathaniel Egan-Pimblett |
Dalhousie University | Sensitivity of global PM2.5-induced mortality to emissions | Colin Lee |
JPL | Microwave Limb Sounder (MLS) Ozone assimilation and CMS | Meemong Lee |
JPL | TES ozone assimilation/attribution of ozone radiative forcing | Kevin Bowman |
Peking University | Satellite constraints on VOC emissions | May Fu |
Purdue University | Feedback between terrestrial ecosystem processes and atmospheric CO2 signals | Qing Zhu |
Purdue University | Feedback between aquatic ecosystem processes and atmospheric CH4 signals | Zeli Tan |
NCAR | Adjoint analysis for carbon monoxide and ozone | Zhe Jiang |
University of Toronto | Sensitivity of ozone and CO to precursor emissions | Cynthia Whaley |
Drexel | ISORROPIA adjoint development; NH3 assimilation; cloud droplet sensitivities | Shannon Capps |
Peking University | Source attributions of tropospheric ozone over North China | Jintai Lin |
University of Wollongong | Sensitivity of ozone and adjoint analysis of CO over Australasia. | Rebecca Buchholz |
University of Wisconsin | CO2 assimilation and forecast & Temperature profile retrieval | Wenguang Bai |
Anyang University | Aerosol emission modeling in East Asia | Youn Seo Koo |
Nanjing University | Inverse modeling of terrestrial ecosystem carbon flux | Hengmao Wang |
Tsinghua University | Nested-gird simulations with the adjoint model | Nan Yang |
University of Minnesota | Inverse modeling of VOC sources based on TES and IASI measurements | Kelley Wells, Dylan Millet |
University of Minnesota & CU Boulder | Inverse modeling of N2O sources | Dylan Millet, Daven Henze |
Tsinghua University | Inverse modeling of anthropogenic emissions over East Asia | Qiang Zhang |
UCLA | Constrain black carbon emission | Ling Qi |
UCLA | source attribution of ozone in the western U.S. | Mei Gao |
University of Toronto | Methane inverse modeling | Ilya Stanevich |
University of Edinburgh | Ozone sensitivity in biomass burning plumes | Douglas Finch |
CRAES | source attribution of PM in eastern China | Wei Peng |
USTC | assimilation & sensitivies of CO2 | Li Tuang |
University of Florida | Nitrogen deposition related to climate strategy projections with GCAM | Colleen Baublitz, Barron H. Henderson |
JAMSTEC | Multiple-constituent satellite data assimilation | Kazuyuki Miyazaki |
MIT | Air quality, aircraft emissions and sensitivities | Kingshuk Dasadhikari |
Peking University | Satellite Health impact analysis of China interregional pollution trade | Liu Yang |
Yangtze River Delta Center for Environmental Meteorology Prediction and Warning | Air quality, anthropogenic emissions and sensitivities | Yixuan Gu |
Publications
Journal Articles
- In press or sumbitted
- Turner, A. J., D. J. Jacob, K. J. Wecht, J. D. Maasakkers, S. C. Biraud, H. Boesch, K. W. Bowman, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V. H. Payne, R. Sussmann, V. A. Velazco, T. Warneke, P. O. Wennberg, and D. Wunch, Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data, submitted to Atmos. Chem. Phys.
- Turner, A. J. and D. J. Jacob, Balancing aggregation and smoothing errors in inverse models, submitted to Atmos. Chem. Phys.
- Liu, J., Bowman, K., and Henze, D., Source-receptor relationships of column-average CO2 and implications for the impact of observations on flux inversions. JGR-Atmosphere, in press.
- Whaley, C. H., K. Strong, D. B. A. Jones, T. W. Walker, Z. Jiang, D. K. Henze, M. Cooke, C. A. McLinden, M. Pommier, R. L. Mittermeier, P. F. Fogal, Improvements to our understanding of urban ozone air pollution: Sources of Toronto-area ozone during poor air quality events, submitted.
- Zhao, Y. H., L. Zhang, Y. P. Pan, Y. S. Wang, F. Paulot, and D. K. Henze, Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution, submitted.
- Lapina, K., D. K. Henze, J. B. Milford, C. Cuvelier, and M. Seltzer, Implications of RCP Scenarios for future changes in vegetative exposure to ozone in the Western U.S., Geophys. Res. Let., in press.
- Zhang, L., L. Licheng, Y. Zhao, S. Gong, X. Zhang, D. K. Henze, S. L. Capps, T.-M. Fu, Q. Zhang, Source attribution of particulate matter pollution over North China with the adjoint method, submitted.
- Walker, T. W., D. B. A. Jones, D. K. Henze, Z. Jiang, M. Parrington, F. Paulot, and Y. Rochon, Adjoint sensitivity analysis of North American surface ozone concentrations: Implications for dry deposition, submitted.
- Keller, M, D. B. A. Jones, Z. Jiang, D. K. Henze, and H. Worden, Quantifying model biases in CO emission estimation using weak constraint 4D-Var, submitted.
- Bousserez, N., D. K. Henze, B. Rooney, A. Perkins, K. J. Wecht, A. J. Turner, V. Natraj, J. R. Worden, Constraints on methane emissions in North America from future geostationary remote sensing measurements, submitted.
- 2016
- Tan, Z., Q. Zhuang, D. K. Henze, C. Frankenberg, E. Dlugokencky, C. Sweeney, A. J. Turner, M. Sasakawa, T. Machida, Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?, Atmos. Chem. Phys., 16, 12649–12666, doi:10.5194/acp-16-12649-2016.
- 2015
- Zhang, L., D. K. Henze, G. A. Grell, G. R. Carmichael, N. Bousserez, Q. Zhang, J. Cao, O. Torres, C. Ahn, Z. Lu, Y. Mao, Constraining black carbon aerosol over Southeast Asia using OMI aerosol absorption optical depth and the adjoint of GEOS-Chem, Atmos. Chem. Phys., 15, 10281-10308, doi:10.5194/acp-15-10281-2015.
- Patrick S. Kim, Daniel J. Jacob, Loretta J. Mickley, Shannon N. Koplitz, Miriam E. Marlier, Ruth S. DeFries, Samuel S. Myers, Boon Ning Chewf, Yuhao H. Mao, Sensitivity of population smoke exposure to fire locations in Equatorial Asia, doi:10.1016/j.atmosenv.2014.09.045
- Deng, F., D. B. A. Jones, T. W. Walker, M. Keller, K. W. Bowman, D. K. Henze, R. Nassar, E. A. Kort, S. C. Wofsy, K. A. Walker, A. E. Bourassa, and D. A. Degenstein, Sensitivity analysis of the potential impact of discrepancies in stratosphere-troposphere exchange on inferred sources and sinks of CO2, Atmos. Chem. Phys. Discuss., 15, 10813-10851, doi:10.5194/acpd-15-10813-2015.
- Jiang, Z., D. B. A. Jones, J. R. Worden, H. M. Worden, D. K. Henze, Y. X. Wang, Regional data assimilation of multi-spectral MOPITT observations of CO over North America, Atmos. Chem. Phys. Discuss., 15, 5327-5358, doi:10.5194/acpd-15-5327-2015.
- Zhu, L., D. K. Henze, J. Bash, G. Jeong, K. Cady-Pereira, M. Shephard, M. Luo, F. Paulot, and S. Capps, Global evaluation of ammonia bi-directional exchange, Atmos. Chem. Phys. Discuss., 15, 4823-4877, doi:10.5194/acpd-15-4823-2015.
- Jiang, Z., J. R. Worden, D. B. A. Jones, J.-T. Lin, W. Verstraeten, and D. K. Henze, Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT, Atmos. Chem. Phys., 15, 99-112.
- Lee, C.J., R.V. Martin, Henze D.K., Brauer M., Cohen A., and A. van Donkelaar, Sensitivity of global particulate-matter-related mortality to local precursor emissions, Environ. Sci. Technol., 49(7), 4335–4344, doi:10.1021/acs.est.5b00873, 2015.
- Bousserez, N., D. K. Henze, A. Perkins, K. W. Bowman, M.Lee, J.Liu, D.B.A. Jones, F. Deng, Improved analysis-error covariance matrix for high-dimensional variational inversions: application to source estimation using a 3D atmospheric transport model. Q.J.R. Meteorol. Soc.. doi: 10.1002/qj.2495
- 2014
- Jiang, Z., D. B. A Jones, H. M. Worden, and D. K. Henze, Sensitivity of inferred regional CO source estimates to the vertical structure in CO as observed by MOPITT, Atmos. Chem. Phys. Discuss., 14, 22939-22984
- Zhu, Q., Q. Zhuang, D. K. Henze, K. Bowman, M. Chen, Y. Liu, Y. He, H. Matsueda, T. Machida, and Y. Sawa, Constraining terrestrial ecosystem CO2 fluxes by integrating models of biogeochemistry and atmospheric transport and data of surface carbon fluxes and atmospheric CO2 concentrations, Atmos. Chem. Phys. Discuss., 14, 22587-22638
- Mao, Y. H., Q. B. Li, D. K. Henze, Z. Jiang, D. B. A. Jones, M. Kopacz, C. He, L. Qi, M. Gao, W.-M. Hao, and K.-N. Liou, Variational estimates of black carbon emissions in the western United States, Atmos. Chem. Phys. Discuss., 14, 21865-21916
- Liu, J., Bowman, K., Lee, M., Henze, D., Bousserez, N., Brix, H., Collatz, G., Menemenlis, D., Ott, L., Pawson, S., Jones, D., Nassar, R.. Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric sources and sinks. Tellus B, North America, 66, may. 2014. Available at: http://www.tellusb.net/index.php/tellusb/article/view/22486
- Lee, H., D. K. Henze, B. Alexander, and L. T., Murray, Investigating the sensitivity of surface-level nitrate seasonality in Antarctica to primary sources using a global model, Atmos. Environ., 89, 757--767, doi:0.1016/j.atmosenv.2014.03.003
- Paulot, F., D. J. Jacob, R. W. Pinder, J. O. Bash, K. Travis, D. K. Henze, Ammonia emissions in the United States, Europe, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3), J. Geophys. Res., 119, 7, 4343--4364, doi:10.1002/2013JD021130.
- Lapina, K., D. K. Henze, J. B. Milford, M. Huang, M. Lin, A. M. Fiore, G. Carmichael, G. G. Pfister, and K. W. Bowman, Assessment of source contributions to seasonal vegetative exposure to ozone in the U.S., J. Geophys. Res., 119, 324-340, doi:10.1002/2013JD020905
- Shen, Z., J. Liu, L. W. Horowitz, D. K. Henze, S. Fan, H. Levy II, D. L. Mauzerall, J. Lin, and S. Tao,.: Analysis of transpacific transport of black carbon during HIPPO-3: implications for black carbon aging, Atmos. Chem. Phys. Discuss., 14, 505-540, doi:10.5194/acpd-14-505-2014
- Wells, K. C., D. B. Millet, K. E. Cady-Pereira, M. W. Shephard, D. K. Henze, N. Bousserez, E. C. Apel, J. de Gouw, C. Warneke, H. B. Singh, Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor, Atmos. Chem. Phys., 14, 2555-2570
- 2013
- Deng, F., D. B. A. Jones, D. K. Henze, N. Bousserez, K. W. Bowman, J. B. Fisher, R. Nassar, C. O'Dell, D. Wunch, P. O. Wennberg, E. A. Kort, S. C. Wofsy, T. Blumenstock, N. M. Deutscher, D. Griffith, F. Hase, P. Heikkinen, V. Sherlock, K. Strong, R. Sussmann, and T. Warneke, Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data, Atmos. Chem. Phys. Discuss., 13, 26327-26388
- Meland, B., X. Xu, D. K. Henze, J. Wang, Assessing remote polarimetric measurements sensitivities to aerosol emissions using the GEOS-Chem adjoint model, Atmos. Meas. Tech. Discuss., 6, 5447-5493, doi:10.5194/amtd-6-5447-2013
- Xu, X., J. Wang, D. K. Henze, W. Qu, M. Kopacz, Constraints on Aerosol Sources Using GEOS-Chem Adjoint and MODIS Radiances, and Evaluation with Multi-sensor (OMI, MISR) data, J. Geophys. Res., 118, doi:10.1002/jgrd.50515.
- Paulot, F., D. J. Jacob and D. K. Henze, Sources and processes contributing to nitrogen deposition in biodiversity hotspots worldwide, Environ. Sci. Technol, 47, 3226-3233, doi:10.1021/es3027727.
- Koo, J., Q. Wang, D. K. Henze, I. A. Waitz, S.R.H. Barrett, Spatial sensitivities of human health risk to intercontinental and high-altitude pollution, Atmos. Environ., 71, 140-147.
- Kharol, S., R. V. Martin, S. Philip, S. Vogel, D. K. Henze, D. Chen, Y. Wang, Q. Zhang, C. L. Heald, Persistent Sensitivity of Asian Aerosol to Emissions of Nitrogen Oxides, Geophys. Res. Lett., 40, 1021-1026, doi:10.1002/grl.50234.
- Jiang, Z., D. B. A. Jones, H. M. Worden, M. N. Deeter, D. K. Henze, J. Worden, and K. W. Bowman, Quantifying the impact of model biases in convective transport on inferred CO source estimates using multi-spectral CO retrievals from MOPITT, J. Geophys. Res.,118, doi:10.1029/jgrd.50216
- L. Zhu, D. K. Henze, K. E. Cady-Pereira, M. W. Shephard, M. Luo, R. W. Pinder, J. O. Bash, G. Jeong, Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint model, J. Geophys. Res., 118, doi:10.1002/jgrd.50166
- Koo, J., Q. Wang, D. K. Henze, I. A. Waitz, S.R.H. Barrett, Spatial sensitivities of human health risk to intercontinental and high-altitude pollution, Atmos. Environ., 71, 140-147
- 2012
- Bowman, K. W., and D. K. Henze, Attribution of direct ozone radiative forcing to spatially-resolved emissions, Geophys. Res. Lett., 39, L22704, doi:10.1029/2012GL053274.
- Henze, D. K., D. T. Shindell, F. Akhtar, R. J. D. Spurr, R. W. Pinder, D. Loughlin, M. Kopacz, K. Singh, and C. Shim, Spatially refined aerosol direct radiative forcing efficiencies, Environ. Sci. Technol., 46, 9511 - 9518, dx.doi.org/10.1021/es301993s.
- Karydis, V. A., S. L. Capps, R. H. Moore, A. Russell, D. K. Henze, and A. Nenes, Using a global aerosol model adjoint to unravel the footprint of spatially-distributed emissions on cloud droplet number and cloud albedo, Geophys. Res. Lett., 39, L24804, doi:10.1029/2012GL053346.
- Parrington, M., P. I. Palmer, D. K. Henze, D. W. Tarasick, E. J. Hyer, R. C. Owen, C. Clerbaux, K. W. Bowman, M. N. Deeter, E. M. Barratt, P.-F. Coheur, D. Hurtmans, M. George, and J. R. Worden, The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010, Atmos. Chem. Phys., 12, 2077-2098.
- Paulot, F., D. K. Henze, and P. O. Wennberg, Impact of the isoprene photochemical cascade on tropical ozone, Atmos. Chem. Phys., 12, 1307-1325.
- Singh, K. and A. Sandu, 2012: Variational chemical data assimilation with approximate adjoints. Computers and Geosciences, 40, 10-18.
- Turner, A., D. K. Henze, R. V. Martin, and A. Hakami, The spatial extent of source influences on modeled column concentrations of short-lived species, Geophys. Res. Lett., 39, L12806, doi:10.1029/2012GL051832.
- Walker, T., D. B. A. Jones, M. Parrington, D. K. Henze, L. T. Murray, J. W. Bottenheim, K. Anlauf, J. R. Worden, K. W. Bowman, C. Shim, K. Singh, M. Kopacz, D. W. Tarasick, J. Davies, P. von der Gathen, and C. C. Carouge, Impacts of midlatitude precursor emissions and local photochemistry on ozone abundances in the Arctic, J. Geophys. Res.,117, D01305 doi:10.1029/2011JD016370.
- Wang, J., X. Xu, D. K. Henze, Q. Ji, S.-C. Tsay, J. Huang, Top-Down Estimate of Dust Emissions through Integration of MODIS and MISR Aerosol Retrievals with the GEOS-Chem adjoint model, Geophys. Res. Lett., 39, L08802.
- Wecht, K. J., D. J. Jacob, S. C. Wofsy, E. A. Kort, J. R. Worden, S. S. Kulawik, D. K. Henze, M. Kopacz, and V. H. Payne, Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources, Atmos. Chem. Phys., 12, 1823-1832.
- Singh, K. and A. Sandu (2012). "Variational chemical data assimilation with approximate adjoints." Computers and Geosciences 40: 10-18.
- 2011
- Jiang, Z., D. B. A. Jones, M. Kopacz, J. Liu, D. K. Henze, and C. Heald, Quantifying the impact of model errors on top-down estimates of carbon monoxide emissions using satellite observations, J. Geophys. Res., 116, D15306, doi:10.1029/2010JD015282.
- Jiang, Z., D. B. A. Jones, M. Kopacz, J. Liu, D. K. Henze, and C. Heald (2011), Quantifying the impact of model errors on top-down estimates of carbon monoxide emissions using satellite observations, J. Geophys. Res., 116, D15306, doi:10.1029/2010JD015282.
- Kopacz, M., D. L. Mauzerall, J. Wang, E. M. Leibensperger, D. K. Henze, and K. Singh, Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau, Atmos. Chem. Phys., 11, 2837-2852.
- 2010
- Kopacz, M., D. J. Jacob, J. A. Fisher, J. A. Logan, L. Zhang, I. A Megretskaia, R. M. Yantosca, K. Singh, D. K. Henze, J. P. Burrows, M. Buchwitz, I. Khlystova, W. W. McMillan, J. C. Gille, D. P. Edwards, A. Eldering, V. Thouret, and P. Nedelec (2010), Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), Atoms. Chem. Phys., 10, 855-876.
- Kopacz, M., D.J. Jacob, J.A. Fisher, J. A. Logan, L. Zhang, I. A. Megretskaia, R. M. Yantosca, K. Singh, D. K. Henze, J. P. Burrows, M. Buchwitz, I. Khlystova, W. W. McMillan, J. C. Gille, D. P. Edwards, A. Eldering, V. Thouret, and P. Nedelec (2010): Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855-876. http://www.atmos-chem-phys.net/10/855/2010/acp-10-855-2010.
- Parrington, M., P. I. Palmer, D. K. Henze, D. W. Tarasick, E. J. Hyer, R. C. Owen, C. Clerbaux, K. W. Bowman, M. N. Deeter, E. M. Barratt, P.-F. Coheur, D. Hurtmans, M. George, and J. R. Worden (2012), The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010, Atmos. Chem. Phys., 12, 2077-2098
- Singh, K., Jardak, M., Sandu, A., Bowman, K., Lee, M., and Jones, D. (2010): Construction of non-diagonal background error covariance matrices for global chemical data assimilation, Geosci. Model Dev. Discuss., 3, 1783-1827, doi:10.5194/gmdd-3-1783-2010. http://www.geosci-model-dev-discuss.net/3/1783/2010/gmdd-3-1783-2010.html
- 2009
- Eller, P., K. Singh, A. Sandu, K. Bowman, D. K. Henze, and M. Lee (2009), Implementation and evaluation of an array of chemical solvers in a global chemical transport model, Geosci. Mod. Devel., 2, 185-207.
- Henze, D. K., J. H. Seinfeld and D. T. Shindell, (2009), Inverse modeling and mapping U.S. air quality influences of inorganic PM2.5 precursor emissions with the adjoint of GEOS-Chem, Atoms. Chem. Phys., 9, 5877-5903.
- Kopacz, M., D. J. Jacob, D. K. Henze, C. L. Heald, D. G. Streets, and Q. Zhang (2009), A comparison of analytical and adjoint Bayesian inversion methods for constraining Asian sources of CO using satellite (MOPITT) measurements of CO columns, J. Geophys. Res., 114, D04305, doi:10.1029/2007JD009264.
- Pye, H. O. T., H. Liao, S. Wu, L. J. Mickely, D. J. Jacob, D. K. Henze, and J. H. Seinfeld (2009), Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States, J. Geophys. Res., 114, D01205, doi:10.1029/2008JD010701.
- Zhang, L., D. J. Jacob, M. Kopacz, D. K. Henze, K. Singh, and D. A. Jaffe (2009), Intercontinental source attribution of ozone pollution at western U.S. sites using an adjoint method, Geophys. Res. Lett., 36, L11810, doi:10.1029/2009GL037950.
- 2007
- Henze, D. K., A. Hakami and J. H. Seinfeld (2007), Development of the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7, 2413-2433.
Conference proceedings
- Adjoint inversion of CO sources using combined MOPITT, SCIAMACHY and AIRS CO columns, presented by Monika Kopacz at the COSPAR Scientific Assembly, Montreal, July 18, 2008. http://acmg.seas.harvard.edu/presentations/powerpoints/mak2008/COSPAR_MKopacz_July2008.ppt
- Singh, K., P. Eller, A. Sandu, D. K. Henze, K. Bowman, M. Kopacz, and M. Lee (2009), Towards the construction of a standard geos-chem adjoint model, ACM High Performance Computing Conference.
- Kopacz, M., Mauzerall, D.L., Leibensperger, E.M., Wang, J., Henze, D.K., Singh, K., Shim, C. Identifying the origin and estimating the radiative forcing of BC in the Himalayas: an analysis using the global GEOS-Chem adjoint model, European Geophysical Union meeting, Vienna, May 4, 2010.
- Kopacz, M., Jacob, D.J., Fisher, J.A., Logan, J.A., Zhang, L., Megretskaia, I.A., Yantosca, R.M., Singh, K., Henze, D.K., Burrows, J.P., Buchwitz, M., Khlystova, I., McMillan, W.W., Gille, J.C., Edwards, D.P., Eldering, A., Thouret, V., Nedelec, P. Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), European Geophysical Union meeting, Vienna, May 7, 2010.
- Tang, J., Zhuang, Q. and Xiong, X. (2010), 4D-Var inversion of atmospheric methane fluxes by assimilating SCIAMACHY and AIRS satellite retrievals, AGU, Dec. 18, 2010, http:/web.ics.purdue.edu/~tang16/agu2010_tang.ppt
- Bousserez, N., R. V. Martin, K. W. Bowman, D.K. Henze, M. Kopacz, K. Singh, C. Shim, C. Wespes, Improving the lightning NOx source using satellite observations: a 4D-var analysis approach, AGU, Dec., 2010, http://myweb.dal.ca/nc689777/AGU_liNOx_poster_final.pdf