Updating standard chemistry with JPL 10-6: Difference between revisions
Line 62: | Line 62: | ||
==Evaluation== | ==Evaluation== | ||
{| border="1" cellpadding=" | {| border="1" cellspacing="0" cellpadding="5" | ||
|- | |-bgcolor="#cccccc" | ||
!width="100pt" |'''Reaction''' | |||
!width="200pt" |'''old''' | |||
!width="400pt" |'''new''' | |||
!width="200pt" |'''compare''' | |||
|- | |- | ||
| HO2+HO2 || K1=3.50E-13 exp(430/T); K2=1.70E-33 [M]exp(1000/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T) || K1=3.00E-13 exp(460/T); K2=2.10E-33 [M]exp(920/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T))||[[Image:HO2_HO2.png|thumb|center|100px|]]water enhancement factor is not shown here as it doesn't change from JPL06 to JPL11 | | HO2+HO2 || K1=3.50E-13 exp(430/T); K2=1.70E-33 [M]exp(1000/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T) || K1=3.00E-13 exp(460/T); K2=2.10E-33 [M]exp(920/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T))||[[Image:HO2_HO2.png|thumb|center|100px|]]water enhancement factor is not shown here as it doesn't change from JPL06 to JPL11 |
Revision as of 16:55, 19 July 2011
This page is intended to incorporate the latest version of JPL chemical kinetics (June 15, 2011) into GC standard chemistry.
Standard Chemistry
For Consideration
Below is a list of reactions that are being updated based on the JPL 10-6 document. Note that the temperature sensitivity value, E/R, is entered following JPL format, so the sign is opposite of the GEOS-Chem format. The updates will be tested in the benchmark before they are recommended by the working group.
Reaction | A | E/R | Description |
---|---|---|---|
HO2 + HO2 -> H2O2 + O2 | 3.0e–13 | -460 | Updated rate |
HO2 + HO2 + M -> H2O2 + O2 | 2.1e-33 | -920 | Updated rate |
HO2 + HO2-H2O -> products | 5.4e–11 | 410 | Not directly used; this is a reaction that explains the water enhancement used in calcrate.f |
HO2 + NO -> NO2 + OH | 3.3e-12 | -270 | Update rate |
ISOP + NO3 -> products | 3.3e-12 | 450 | Updated rate, assuming products do not change |
ISOP + OH -> products | 3.1e-11 | -350 | Updated rate, assuming products do not change |
ISOP + O3 -> products | 1e-14 | 1970 | Updated rate, assuming products do not change |
ALD2 + OH -> products | 4.63e-12 | -350 | Updated rate, assuming products do not change |
C2H6 + OH -> products | 7.66e-12 | 1020 | Updated rate, assuming products do not change |
DMS + OH -> products | 1.2e-11 | 280 | Updated rate, assuming products do not change |
DMS + OH + O2 -> products | 8.20E-39 and 1.05E-05 | -5376 and -3644 | Updated rate, assuming products do not change (E/R values in comment are plus, but to be consistent with JPL tables, I entered them here as negative. This reaction also had an update to the parametrization. Was: 1 + A * [O2] exp(-(E/R)T); Now: 1 + A * [O2]/[M] * exp(-(E/R)/T) where [O2]/[M] = 0.2095. |
DMS + NO3 -> products | 1.9e-13 | -530 | Updated rate, assuming products do not change |
O3 + hv -> OH + HO2 | jO3 * 1.2e-10 / k1O1D | 0 | This reaction was added to account for the reaction of O1D with H2, which was previously not explicitly included. k1O1D is the pseudo-first order rate of O1D reaction with H2, H2O, O2, and N2. Because H2 was previously left out of k1O1D, ozone photolysis was producing extra OH and the radical budget was mostly conserved. |
O3 + hv -> OH + OH | jO3 * 1.63e-10 * exp(60/T) / k1O1D | 0 | The addition of H2 to k1O1D reduces this reaction rate. |
O1D -> products | k1O1D | 0 | This reaction is included in stead-state photolysis of O3, and is not added to the mechanism. This entry has been added to the table as a place to describe k1O1D = 1.2e-10 * [H2] + 1.63e-10 * exp(60/T) * [H2O] + 2.15e-11 * exp(110/T) * [N2] + 3.30e-11 * exp(55/T) * [O2] |
EOH + OH -> products | 3.35e-12 | n/a | Updated rate, assuming products do not change |
ACTA + OH -> products | 3.15e-14 | 920 | Updated rate, assuming products do not change |
--Barron Henderson 2011/07/12
Mat Evans comments:
- Great work Jingqiu. We should updating all of these for a GC update. We should also think about changing the safety value (if any of the input parameters <= 0) in the ARSL1K routine to be 1e-30 rather than 1e-3
- O1D+H2: Yep we should put this into the O1D steady state. This should be easy
- Didn't the DMS + NO3 and the DMS + OH reaction rates change? The DMS scheme in the model is fairly old. We might want to see if anybody is looking at this....
- I'll contact Stan Sander and ask why the NO2+OH rate constant wasn't updated to the science paper version?
Evaluation
Reaction | old | new | compare |
---|---|---|---|
HO2+HO2 | K1=3.50E-13 exp(430/T); K2=1.70E-33 [M]exp(1000/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T) | K1=3.00E-13 exp(460/T); K2=2.10E-33 [M]exp(920/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T)) | water enhancement factor is not shown here as it doesn't change from JPL06 to JPL11 |
HO2+NO | 3.50E-12 exp(250/T) | 3.3e-12 exp(270/T) | |
ISOP+OH | 2.7E-11exp(390/T) | 3.1E-11exp(350/T) | |
ISOP+NO3 | 3.15E-12 exp(-450/T) | 3.3E-12exp(-450/T) | |
ISOP+O3 | 1.05E-14 exp(-2000/T) | 1.0E-14exp(-1970/T) | |
ALD2+OH | 4.4 E-12exp(365/T) | 4.63E-12exp(350/T) | |
C2H6+OH | 8.7E-12 exp(-1070/T) | 7.66E-12exp(-1020/T) | |
EOH+OH | 6.90E-12exp(-230/T) | 3.35e-12 | |
ACTA+OH | 4.20E-14exp(855/T) | 3.15e-14exp(920/T) | |
O1D+H2 | N/A | ([O1D]*[H2]+[O1D]*[H2O]) / ([O1D]*[H2]+[O1D]*[H2O]+[O1D][N2]+[O1D][O2]) | Here I assume 0.1% RH and 500ppb H2. |
DMS+OH | 1.1E-11exp(-240/T) | 1.2E-11exp(-280/T) | |
DMS+OH+O2 | K1=1.0E-39exp(5820/T); K2=5.0E-30exp(6280/T); K=K1*[O2]/(1.0+K2*[O2]) | K1=8.2E-39exp(5376/T); K2=1.05E-5exp(3644/T); K=K1*[O2]/(1.0+K2*0.2095) | |
DMS+NO3 | 1.90E-13 exp(500/T) | 1.90E-13 exp(530/T) |
Notes: 1. DMS+OH+O2 is quite different in JPL11.
2. The changes in HO2+HO2 and HO2+NO might be responsible for the increase of ozone.
--Jmao 17:40, 14 July 2011 (EDT)
current standard chemistry
Species
Species | Formula | Note |
A3O2 | CH3CH2CH2OO | primary RO2 from C3H8 |
ACET | CH3C(O)CH3 | acetone |
ACTA | CH3C(O)OH | acetic acid |
ALD2 | CH3CHO | acetaldehyde |
ALK4 | RH | ≥C4 alkanes |
ATO2 | CH3C(O)CH2O2 | RO2 from acetone |
B3O2 | CH3CH(OO)CH3 | secondary RO2 from C3H8 |
C2H6 | C2H6 | ethane |
C3H8 | C3H8 | propane |
CH2O | CH2O | formaldehyde |
CH4 | CH4 | methane |
CO | CO | carbon monoxide |
CO2 | CO2 | carbon dioxide |
DRYDEP | generic entry for dry dep | |
EMISSION | generic entry to do emissions | |
EOH | C2H5OH | ethanol |
ETO2 | CH3CH2OO | ethylperoxy radical |
ETP | CH3CH2OOH | ethylhydroperoxide |
GLYC | HOCH2CHO | glycoaldehyde (hydroxyacetaldehyde) |
GLYX | CHOCHO | glyoxal |
H2 | H2 | hydrogen atom |
H2O | H2O | water vapor |
H2O2 | H2O2 | hydrogen peroxide |
HAC | HOCH2C(O)CH3 | hydroxyacetone |
HCOOH | HCOOH | formic acid |
HNO2 | HONO | nitrous acid |
HNO3 | HNO3 | nitric acid |
HNO4 | HNO4 | pernitric acid |
HO2 | HO2 | hydroperoxyl radical |
IALD | HOCH2C(CH3)=CHCHO | hydroxy carbonyl alkenes from isoprene |
IAP | HOCH2C(CH3)(OOH)CH(OH)CHO | peroxide from IAO2 |
INO2 | O2NOCH2C(OO)(CH3)CH=CH2 | RO2 from ISOP+NO3 |
INPN | O2NOCH2C(OOH)(CH3)CH=CH2 | peroxide from INO2 |
ISN2 | CH2=C(CH3)CH(ONO2)CH2OH | isoprene nitrtate |
ISNO3 | RONO2 | stable organic nitrate |
ISNP | HOCH2C(OOH)(CH3)CH(ONO2)CH2OH | peroxide from ISOPNBO2 and ISOPNDO2 |
ISOP | CH2=C(CH3)CH=CH2 | isoprene |
KO2 | RO2 from >3 ketones | RO2 from >3 ketones |
M | for three body reactions | |
MACR | CH2=C(CH3)CHO | methacrolein |
MAN2 | HOCH2C(ONO2)(CH3)CHO | RO2 from MACR+NO3 |
MAO3 | CH2=C(CH3)C(O)OO | peroxyacyl from MVK and MACR |
MAOP | CH2=C(CH3)C(O)OOH | peroxide from MAO3 |
MAP | CH3C(O)OOH | peroxyacetic acid |
MCO3 | CH3C(O)OO | peroxyacetyl radical |
MEK | RC(O)R | >3 ketones |
MGLY | CH3COCHO | methylglyoxyal |
MNO3 | CH3ONO2 | methylnitrate |
MO2 | CH3O2 | methylperoxy radical |
MOH | CH3OH | methanol |
MP | CH3OOH | methylhydroperoxide |
MRO2 | HOCH2C(OO)(CH3)CHO | RO2 from MACR+OH |
MRP | HOCH2C(OOH)(CH3)CHO | peroxide from MRO2 |
MVK | CH2=CHC(O)CH3 | methylvinylketone |
N2 | N2 | nitrogen |
N2O | N2O | nitrous oxide |
N2O5 | N2O5 | dinitrogen pentoxide |
NH2 | NH2 | ammonia radical |
NH3 | NH3 | ammonia |
NO | NO | nitric oxide |
NO2 | NO2 | nitrogen dioxide |
NO3 | NO3 | nitrate radical |
O | O | oxygen atom (3P) |
O1D | O1D | oxygen atom (1D) |
O2 | O2 | molecular oxygen |
O2CH2OH | O2CH2OH | produced by CH2O+HO2 |
O3 | O3 | ozone |
OH | OH | hydroxyl radical |
PAN | CH3C(O)OONO2 | peroxyacetylnitrate |
PMN | CH2=C(CH3)C(O)OONO2 | peroxymethacryloyl nitrate (MPAN) |
PO2 | HOCH2CH(OO)CH3 | RO2 from isoprene |
PP | HOCH2CH(OOH)CH3 | peroxide from PO2 |
PPN | CH3CH2C(O)OONO2 | peroxypropionylnitrate |
PRN1 | O2NOCH2CH(OO)CH3 | RO2 from propene + NO3 |
PRPE | C3H6 | ≥C4 alkenes |
PRPN | O2NOCH2CH(OOH)CH3 | peroxide from PRN1 |
R4N1 | RO2 from R4N2 | RO2 from R4N2 |
R4N2 | RO2NO | ≥C4 alkylnitrates |
R4O2 | RO2 from ALK4 | RO2 from ALK4 |
R4P | CH3CH2CH2CH2OOH | peroxide from R4O2 |
RA3P | CH3CH2CH2OOH | peroxide from A3O2 |
RB3P | CH3CH(OOH)CH3 | peroxide from B3O2 |
RCHO | CH3CH2CHO | >C2 aldehydes |
RCO3 | CH3CH2C(O)OO | peroxypropionyl radical |
RCOOH | C2H5C(O)OH | >C2 organic acids |
RIO1 | HOCH2C(OO)(CH3)CH=CHOH | RO2 from isoprene oxidation products |
RIO2 | HOCH2C(OO)(CH3)CH=CH2 | RO2 from isoprene |
RIP | HOCH2C(OOH)(CH3)CH=CH2 | peroxide from RIO2 |
ROH | C3H7OH | >C2 alcohols |
RP | CH3CH2C(O)OOH | peroxide from RCO3 |
VRO2 | HOCH2CH(OO)C(O)CH3 | RO2 from MVK+OH |
VRP | HOCH2CH(OOH)C(O)CH3 | peroxide from VRO2 |
DMS | (CH3)2S | dimethylsulfide |
SO2 | SO2 | sulfur dioxide |
SO4 | SO4 | sulfate radical |
MSA | CH4SO3 | methanesulfonic acid |
Reactions
No | Reaction | Rate Constant | Reference | Note | |
1 | NO + O3 = NO2 + O2 | 3.00E-12 exp(-1500/T) | JPL06 | ||
2 | O3+OH = HO2+O2 | 1.70E-12 exp(-940/T) | JPL06 | ||
3 | O3+HO2 = OH+2O2 | 1.00E-14 exp(-490/T) | JPL06 | ||
4 | O3+NO2 = O2+NO3 | 1.20E-13 exp(-2450/T) | JPL06 | ||
5 | O3+MO2 = CH2O+HO2+2O2 | 2.90E-16 exp(-1000/T) | JPL06 | ||
6 | OH+OH = H2O+O3 | 1.8E-12 | JPL06 | JMAO | |
7 | OH+OH+M = H2O2 | LPL: 6.9E-31(300/T); HPL: 2.60E-11; Fc:0.6 | JPL06 | JMAO | |
8 | OH+HO2 = H2O + O2 | 4.80E-11 exp (250/T) | JPL06 | JMAO | |
9 | OH+H2O2 = H2O + HO2 | 1.8E-12 | JPL06 | JMAO | |
10 | HO2+NO = OH + NO2 | 3.50E-12 exp(250/T) | JPL06 | ||
11 | HO2+HO2 = H2O2 HO2+HO2+M=H2O2 | K1=3.50E-13 exp(430/T); K2=1.70E-33 [M]exp(1000/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T) | JPL06 | JMAO | |
12 | OH+H2 = H2O + HO2 | 2.80E-12 exp(-1800/T) | JPL06 | JMAO | |
13 | CO+OH = HOCO | LPL: 5.9E-33(300/T)^1.4; HPL:1.1E-12(300/T)^-1.3; Fc:0.6 | JPL06 | JMAO(in calcrate.f) Ignore the intermediate species HOCO and use two 3-body reactions | |
HOCO + O2= HO2 + CO2 | 2.00E-12 | JPL06 | |||
CO+OH=HO2+CO2 (different formula) | LPL: 1.5E-13(300/T)^-0.6; HPL:2.10E9(300/T)^-6.1; Fc:0.6 | JPL06 | |||
14 | OH+ CH4 = MO2+H2O | 2.45E-12exp(–1775/T) | JPL06 | JMAO:could also be 2.8E-14T^0.667 exp(–1575/T) | |
15 | MO2+NO =CH2O+HO2+NO2 | 2.80E-12 exp(300/T) | JPL06 | ||
16 | MO2+HO2 = MP+O2 | 4.1E-13 exp(750/T) | JPL06 | JMAO | |
17 | MO2+HO2 = CH2O + O2 | N/A | JPL06(P1-59,D35) | JMAO:Not recommended in JPL06 | |
18 | MO2+MO2 =MOH+CH2O+O2 | K1=9.5E-14 exp(390/T); K2=2.62E+1 exp(-1130/T); K=K1 / (1+K2) | Tyndall 2001 | ||
19 | MO2+MO2 = 2CH2O + 2HO2 | K1=9.5E-14 exp(390/T); K2=4.00E-02exp(1130/T); K=K1 / (1+K2) | Tyndall 2001 | ||
20 | MP+OH = MO2+H2O | 2.66E-12 exp(200/T) | JPL06 | ||
21 | MP+OH = CH2O+OH+H2O | 1.14E-12 exp(200/T) | JPL06 | ||
22 | CH2O+OH = HCO +H2O | 5.5E-12 exp(125/T) | JPL06 | JMAO(use the first rate) | |
HCO + O2 = CO + HO2 | 5.2E-12 | JPL06 | |||
23 | OH + NO2 + M = HONO2 | LPL: 1.80E-30(300/T)^3; HPL:2.80E-11(300/T)^0; Fc:0.6 | JPL06 | JMAO: Ignore the HOONO channel for now. | |
OH + NO2 + M=HOONO | LPL:9.10E-32(300/T)^3.9 ; HPL:4.20E-11(300/T)^0.5; Fc:0.6 | JPL06 | |||
24 | HNO3+OH = H2O+NO3 | K0=2.41E-14 exp(460/T); K2=2.69E-17exp(2199/T); K3=6.51E-34exp(1335/T); K = K0 + K3[M] / (1 + K3[M]/K2) | JPL06 | ||
25 | NO+OH+M = HNO2+M | LPL: 7.00E-31(300/T)^2.6; HPL: 3.60E-11(300/T)^0.1; Fc: 0.6 | JPL06 | ||
26 | HNO2+OH = H2O+NO2 | 1.80E-11 exp(-390/T) | JPL06 | ||
27 | HO2+NO2+M = HNO4+M | LPL: 2.0E-31(300/T)^3.4; HPL:2.9E-12(300/T)^1.1; Fc= 0.6 | JPL06 | JMAO | |
28 | HNO4+M = HO2+NO2 | LPL: 9.52E-5(300/T)^3.4* exp(-10900/T); HPL:1.38E+15*(300/T)^1.1*exp(-10900/T); Fc=0.6 | JPL06 | JMAO:K=forward rxn/Keq; Keq=2.1E-27exp(10900/T); | |
29 | HNO4+OH = H2O+NO2+O2 | 1.30E-12 exp(380/T) | JPL06 | ||
30 | NO+NO3=2NO2 | 1.50E-11 exp(170/T) | JPL06 | ||
31 | HO2+NO3 = OH+NO2+O2 | 3.50E-12 | JPL06 | ||
32 | OH+NO3 = HO2+NO2 | 2.20E-11 | JPL06 | ||
33 | NO2+NO3+M = N2O5+M | LPL: 2.0E-30(300/T)^4.4; HPL:1.4E-12(300/T)^0.7; Fc=0.6 | JPL06 | ||
34 | N2O5+M = NO2+NO3 | LPL: 7.4E-4(300/T)^4.4* exp(-11000/T); HPL:5.18E+14*(300/T)^0.7*exp(-11000/T); Fc=0.6 | JPL06 | JMAO :K=forwardrxn/ Keq; Keq = 2.70E-27exp(11000/T); | |
35 | HCOOH+OH =H2O+CO2+HO2 | 4.00E-13 | JPL06 | ||
36 | MOH+OH = HO2+CH2O | 2.9E-12 exp(-345/T) | JPL06 | ||
37 | NO2+NO3 = NO+NO2+O2 | 4.50E-14 exp(-1260/T) | JPL06 | ||
38 | NO3+CH2O = HNO3+HO2+CO | 5.80E-16 | JPL06 | ||
39 | ALD2 + OH=H2O + 0.95 MCO3 + 0.05 CH2O + 0.05 CO + 0.05 HO2 | 4.4 E-12exp(365/T) | IUPAC06 | DBM (cannot find this reaction from JPL06) | |
40 | ALD2+NO3 = HNO3+MCO3 | 1.40E-12 exp(-1900/T) | JPL06 | JMAO | |
41 | MCO3+NO2+M = PAN | LPL: 9.70E-29(300/T)^5.6; HPL:9.3E-12(300/T)^1.5; Fc: 0.6 | JPL06 | JMAO | |
42 | PAN = MCO3+NO2 | 9.30E-29 exp(14000/T) | IUPAC06 | equilibrium with the one above | |
43 | MCO3+NO = MO2+NO2+CO2 | 8.10E-12 exp(270/T) | JPL06 | ||
44 | C2H6+OH = ETO2+H2O | 8.7E-12 exp(-1070/T) | JPL06 | ||
45 | ETO2+NO =ALD2+NO2+HO2 | 2.60E-12 exp(365/T) | JPL06 | JMAO | |
46 | C3H8+OH = B3O2 | K1=7.60e-12 exp(-585/T); K2=5.87*(300/T)^0.64exp(-816/T); K=K1 / (1+K2) | IUPAC06 | JMAO | |
C3H8+OH = A3O2 | K1=7.60E-12 exp(-585/T); K2= 0.17*(300/T)^-0.64exp(816/T); K=K1 / (1+K2) | IUPAC06 | JMAO | ||
47 | A3O2+NO = NO2 + HO2 + RCHO | 2.90E-12 exp(350/T) | IUPAC06 | JMAO | |
48 | PO2+NO = NO2+HO2+CH2O+ALD2 | 2.70E-12 exp(350/T) | Tyndall 2001 JGR | ||
49 | ALK4+OH = R4O2 | 9.10E-12 exp(-405/T) | IUPAC06 | ||
50 | R4O2+NO = NO2 +0.32ACET + 0.19MEK +0.18MO2 + 0.27HO2 +0.32ALD2 + 0.13RCHO +0.50A3O2 + 0.18B3O2 + 0.32ETO2 | K* (1-YN) where YN isreturned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.50E00) | Atkinson 97 | A3O2 is 0.05 in the input file(Palmer) | |
51 | R4O2+NO = R4N2 | K* YN where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.50E00) | Atkinson97 | ||
52 | ATO2+NO = 0.96NO2 + 0.960CH2O +0.960MCO3 + 0.04R4N2 | 2.80E-12 exp(300/T) | Tyndall | ||
53 | KO2+NO = 0.93NO2+ 0.93ALD2 +0.93MCO3 + 0.07R4N2 | 2.70E-12 exp(350/T) | Tyndall ETO2+NO | JMAO: there was a typo in last version, no yield of NO. (Bryan Duncan). | |
54 | RIO2 + NO = 0.90NO2 + 0.90HO2 + 0.34IALD + 0.34MVK + 0.22MACR + 0.56CH2O | 2.7E-12 exp(350/T) | MCM3.1 | DBM(MCM 3.1), this reaction was recently modified to turn off the other channel. | |
56 | IAO2+NO = 0.92HO2 + 0.61CO + 0.17H2 + 0.33HAC + 0.24GLYC + 0.53MGLY + 0.92NO2 + 0.35CH2O + 0.08HNO3 | 2.7E-12 exp(350/T) | Tyndall ETO2+NO | ||
57 | ISN1+NO = 1.9NO2+0.95GLYC+0.95HAC +0.05HNO3+0.05NO2+0.05HO2 | 2.7E-12 exp(350/T) | Tyndall ETO2+NO; Paulson&Seinfeld 1992 HO2 term(Palmer, JMAO) | ||
58 | VRO2+NO = NO2+0.28HO2+0.28CH2O+0.72MCO3+0.72GLYC+0.28MGLY | K* (1-YN) where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) | Atkinson 97 | ||
59 | VRO2+NO = HNO3 | K* YN where YN is returned from fyrno3.f ;K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) | Atkinson 97 | ||
60 | MRO2 + NO = NO2 + HAC + CH2O + HO2 | K* (1-YN) where YN is returned from fyrno3.f K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) | DBM(MCM 3.1) | ||
61 | MRO2+NO = HNO3 | K* YN where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) | Atkinson 97 | ||
62 | MVN2+NO = 1.90NO2 +0.30HO2+0.30CH2O+0.60MCO3+0.60GLYC+0.30MGLY+0.10HNO3 | 2.7E-12 exp(350/T) | |||
63 | MAN2+NO = 2NO2+CH2O+MGLY | 2.7E-12 exp(350/T) | Tyndall ETO2+NO | ||
64 | B3O2+NO = NO2+HO2+ACET | 2.7E-12 exp(350/T) | |||
65 | INO2+NO = 1.10NO2+0.80HO2+0.85HNO3+0.05NO2+0.10MACR+0.15CH2O+0.05MVK | 2.7E-12 exp(350/T) | Tyndall ETO2+NO | ||
66 | PRN1+NO = 2NO2+CH2O+ALD2 | 2.7E-12 exp(350/T) | Tyndall ETO2+NO | ||
67 | ALK4+NO3 = HNO3 + R4O2 | 2.8E-12 exp(-3280/T) | IUPAC02 | ||
68 | R4N2+OH = R4N1+H2O | 1.6E-12 | IUPAC06 | JMAO: use the one from HO + 1-C4H9ONO2 → products | |
69 | ACTA+OH = MO2+CO2++H2O | 4.20E-14 exp(855/T) | IUPAC06 | JMAO | |
70 | OH+RCHO= RCO3+H2O | 6.0E-12exp(410/T) | IUPAC06 | JMAO: use the one from HO + CH3CH2CH2CHO → products | |
71 | RCO3+NO2 = PPN | LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 | JPL06 | ||
72 | PPN = RCO3+NO2 | 9e-29*exp(14000/T) | JPL06 | ||
73 | MAO3+NO2 = PMN | LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 | JPL06 | ||
74 | PMN = MAO3+NO2 | 9e-29*exp(14000/T) | JPL06 | same as PPN | |
75 | GLCO3+NO2 = GLPAN | LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 | JPL06 | same as PPN | |
76 | GLPAN = GLCO3+NO2 | 9e-29*exp(14000/T) | JPL02 PPN | ||
77 | GCO3+NO2 = GPAN | LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 | JPL02 Same as PPN | ||
78 | GPAN = GCO3+NO2N | 9e-29*exp(14000/T) | JPL02 PPN | ||
79 | RCO3+NO = NO2+ETO2 | 6.70E-12 exp(340/T) | IUPAC06 C2H5CO3+NO | ||
80 | GCO3+NO = NO2+HO2 +CH2O | 6.70E-12 exp(340/T) | IUPAC06 C2H5CO3+NO | ||
81 | GLCO3+NO = NO2+HO2+CO | 6.70E-12 exp(340/T) | IUPAC06 C2H5CO3+NO | ||
82 | RCHO+NO3 = HNO3 +RCO3 | 6.5E-15 | IUPAC06 | use the one from NO3+C2H5CHO → HNO3 + C2H5CO | |
83 | ACET+OH = ATO2 + H2O | 1.33E-13+ 3.82E-11 exp(-2000/T) | JPL 06 | JMAO:Implemented as 2 reactions | |
84 | A3O2+MO2 = HO2 +0.75CH2O+0.75RCHO+0.25MOH + 0.25ROH | 5.92E-13 | Tyndall RateMO2+MO2 Atkinson97RO2+RO2 | K(RO2+MO2) = 2*sqrt(k(MO2+MO2)*k(RO2+RO2)) | |
85 | PO2+MO2 = HO2 + 0.5ALD2+1.25CH2O +0.16HAC + 0.09RCHO +0.25MOH + 0.25ROH | 5.92E-13 | Tyndall RateMO2+MO2 Atkinson97RO2+RO2 | ||
86 | R4O2+HO2 = R4P | 7.40E-13 exp(700/T) | Tyndall | ||
87 | R4N1+HO2 = R4N2 | 7.40E-13 exp(700/T) | Tyndall | ||
88 | ATO2+HO2 = MCO3 + MO2 | 8.60E-13 exp(700/T) | |||
89 | KO2+HO2 = MO2 + MGLY | 7.40E-13 exp(700/T) | Tyndall | Tyndall forms CH3C(O)CH2OOH ,this must then split and go to MCO3+MO2, the products in chem..dat ?? | |
90 | RIO2+HO2 = RIP | 7.40E-13 exp(700/T) | Tyndall | ||
91 | RIO1+HO2 = RIP | 7.40E-13 exp(700/T) | Tyndall | ||
92 | IAO2 + HO2 = IAP | 7.40E-13 exp(700/T) | Tyndall | ||
93 | ISN1+HO2 = ISNP | 7.40E-13 exp(700/T) | Tyndall | ||
94 | VRO2+HO2 = VRP | 7.40E-13 exp(700/T) | Tyndall | ||
95 | MRO2+HO2 = MRP | 7.40E-13 exp(700/T) | Tyndall | ||
96 | MVN2 + HO2 = ISNP | 7.40E-13 exp(700/T) | Tyndall | ||
97 | MAN2 + HO2 = ISNP | 7.40E-13 exp(700/T) | Tyndall | ||
98 | B3O2+HO2 = RB3P | 7.40E-13 exp(700/T) | Tyndall | ||
99 | NO2 + HO2 = INPN | 7.40E-13 exp(700/T) | Tyndall | ||
100 | PRN1 + HO2 = PRPN | 7.40E-13 exp(700/T) | Tyndall | ||
101 | MEK+OH = KO2+H2O | 1.3 E-12exp(-25/T) | IUPAC06 | JMAO | |
102 | MO2+ETO2 = 0.75CH2O+0.75ALD2+HO2+0.25MOH+0.25EOH | 3.00E-13 | Horowitz 98, Atkinson 92& 94 | ||
103 | MEK+NO3 = HNO3+ KO2 | 8.00E-16 | Lurmann et al. 1986 | ||
104 | R4O2+MO2 = 0.16ACET+0.10MEK+0.09MO2+0.14HO2+0.16ALD2 +0.07RCHO+0.03A3O2 +0.09B3O2+0.16ETO2+0.25MEK+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
105 | R4N1+MO2 = NO2+0.20CH2O+0.38ALD2 + 0.29RCHO+0.15R4O2+ 0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
106 | ATO2+MO2 = 0.30HO2+0.30CH20+0.30MCO3+0.20HAC+0.20CH2O+0.50MGLY+0.50MOH | 7.5E-13 exp(500/T) | Tyndall,2001 | ||
107 | KO2+MO2 = 0.5ALD2 +0.50MCO3+0.25MEK+0.75CH2O+0.25MOH+0.25ROH+0.5HO2 | 8.37E-14 | |||
108 | RIO2+MO2 = 0.42HO2 +0.35CH2O+0.2MVK +0.14MACR + 0.07RIO1 +0.06IALD+0.25MEK+0.75CH2O+0.25MOH+0.25ROH + 0.5HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | HO2 term is 0.43 in input file, need to be changed back to 0.42(Palmer, JMAO) | |
109 | RIO1+MO2 = 0.50IALD+0.50HO2+0.38CH2O+0.25MEK+0.75CH2O+0.25MOH+0.25ROH+ 0.5HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
110 | IAO2+MO2 = 0.50HO2 + 0.33CO + 0.09H2 + 0.18HAC + 0.13GLYC + 0.29MGLY + 0.25MEK + 0.95CH2O + 0.25MOH + 0.25ROH + 0.5HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
111 | ISN1+MO2 = NO2+0.50GLYC+0.50HAC+0.25RCHO+0.75CH2O+0.25MOH+ 0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
112 | VRO2+MO2 = 0.14HO2 + 0.14CH2O + 0.36MCO3 + 0.36GLYC + 0.14MGLY + 0.25MEK + 0.75CH2O + 0.25MOH + 0.25ROH + 0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
113 | MRO2 + MO2 = HAC + 0.85CH2O + 1.15HO2 + 0.15CO | 8.37E-14 | DBM(MCM 3.1) | ||
114 | MVN2+MO2 = NO2+0.50CH2O+0.25MCO3 +0.25MGLY+0.25HO2+0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
115 | MAN2+MO2= NO2+0.50CH2O+0.50MGLY+0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
116 | B3O2+MO2 = 0.50HO2+0.50ACET+0.25ACET +0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
117 | INO2+MO2 = 0.55NO2 + 0.40HO2 + 0.425HNO3 + 0.025NO2 + 0.05MACR + 0.08CH2O + 0.03MVK + 0.25RCHO + 0.75CH2O + 0.25MOH + 0.25ROH + 0.05HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | NISOPO2(in MCM), HO2 term is 0.5 in the input file, need to be fixed. (Palmer, JMAO) | |
118 | PRN1+MO2 = NO2+0.50CH2O+ 0.50ALD2+0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 | 8.37E-14 | Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) | ||
119 | EOH+OH = HO2+ALD2 | 6.90E-12 exp(-230/T) | JPL02 | ||
120 | ROH+OH = HO2+RCHO | 4.6E-12 exp(70/T) | IUPAC06 | not in JPL06 | |
121 | ETO2+ETO2 = 2ALD2 +2HO2 | 4.10E-14 | JPL06 | ||
122 | ETO2+ETO2 = EOH + ALD2 | 2.70E-14 | JPL06 | ||
123 | HO2+ETO2 = ETP | 7.40E-13 exp(700/T) | Tyndall (see note 4) | ||
124 | A3O2+HO2 = RA3P | 7.40E-13 exp(700/T) | Tyndall | ||
125 | PO2+HO2 = PP | 7.40E-13 exp(700/T) | Tyndall | ||
126 | MCO3 + HO2 = 0.15 ACTA + 0.15 O3 + 0.44 OH + 0.44 MO2 + 0.41 MAP | 5.2e-13exp(980/T) | IUPAC(Feb2009) | DBM | |
128 | RCO3+HO2=0.3RCOOH+0.3O3+ 0.7RP | 4.30E-13 exp(1040/T) | |||
129 | GCO3 + HO2 = 0.71GP + 0.29O3 + 0.29CH2O | 4.30E-13 exp(1040/T) | DBM(MCM 3.1) | ||
130 | MAO3+HO2=0.3RCOOH+0.3O3 + 0.7MAOP | 4.30E-13 exp(1040/T) | |||
131 | GLCO3+HO2=0.3RCOOH+0.3O3+0.7GLP | 4.30E-13 exp(1040/T) | |||
132 | PRPE+OH+M = PO2 | LPL: 8.00E-27(300/T)^3.5;HPL:3.00E-11(300/T); Fc: 0.5 | IUPAC06 | JMAO | |
133 | PRPE+O3 = 0.535CH2O+0.500ALD2+0.420CO+0.300HO2+0.135OH+0.065H2+0.305MO2 | 5.50E-15 exp(-1880/T) | IUPAC06 | JMAO | |
134 | GLYX+OH = HO2+2CO | 1.1E-11 | IUPAC06 | Already updated | |
135 | MGLY+OH = MCO3+CO | 1.50E-11 | IUPAC06 | JMAO | |
136 | GLYX+NO3 = HNO3 + HO2+ 2CO | K1=1.40E-12exp(-1860/T); K=K1*([O2]+3.5D18)/(2*[O2]+3.5D18); | Atkinson92&94, (ALD2) | ||
137 | MGLY+NO3 = HNO3 + CO +MCO3 | 1.40E-12 exp(-1860/T) | Atkinson92&94, (ALD2)/IUPAC06 | ||
138 | ISOP+OH = RIO2 | 2.70E-11 exp(390/T) | IUPAC06 | ||
139 | MVK+OH = VRO2 | 2.6e-12exp(610/T) | IUPAC06 | JMAO | |
140 | MACR + OH = 0.57MAO3 + 0.43MRO2 | 8.0E-12exp(380/T) | IUPAC06 | JMAO,DBM(MCM3.1) | |
141 | HAC+OH = MGLY+HO2 | 3E-12 | Atkinson 92,94/IUPAC06 | ||
142 | MCO3+A3O2 = MO2+RCHO+HO2 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See Note 12 | ||
143 | MCO3+PO2 = MO2 +ALD2+CH2O+HO2 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See Note 12 | ||
144 | MCO3+A3O2 = ACTA +RCHO | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See Note 12 | ||
145 | MCO3+PO2 = ACTA + 0.35RCHO+0.65HAC | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See Note 12 | ||
146 | ISOP+O3 = 0.387MACR + 0.159MVK + 0.100O3 + 0.270OH + 0.070PRPE + 0.900CH2O + 0.060HO2 + 0.150CO2 + 0.050CO | 1.05E-14 exp(-2000/T) | Paulson &Seinfeld, 92 Aschmann &Atkinson, 94 | ||
147 | MVK+O3 = 0.82MGLY+ 0.80CH2O+0.20O2+0.05CO+0.06HO2+ 0.04ALD2 | 8.5 E-16exp(-1520/T) | IUPAC06 | 0.20O2->0.20O3(Palmer, JMAO, according to Paulson & Seinfeld 92) Note 12 | |
148 | MACR+O3 = 0.800MGLY +0.700CH2O+0.200O3+0.200CO+0.275HO2+0.215OH+0.160CO2 | 1.4 E-15exp(-2100/T) | IUPAC06 | JMAO | |
149 | ISOP+NO3 = INO2 | 3.15E-12 exp(-450/T) | IUPAC06 | JMAO | |
150 | MVK+NO3 = MVN2 | REMOVED (<6E-16,IUPAC06) | IUPAC06 | JMAO | |
151 | MACR+NO3 = MAN2 | 2.3E-15 | IUPAC06 | JMAO | |
152 | MACR+NO3 = MAO3+HNO3 | 1.1E-15 | IUPAC06 | JMAO:IUPAC06 total rate is 3.4E-15, so use the ratio from Lurmann et al.,1986 | |
153 | RCO3+MO2 = CH2O+HO2+ETO2 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
154 | GCO3+MO2 = 2CH2O +2HO2 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
155 | MAO3+MO2 = CH2O+HO2+CH2O+MCO3 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
156 | GLCO3+MO2 = CH2O +2HO2+CO | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
157 | RCO3+MO2 = RCOOH +CH2O | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
158 | GCO3+MO2 = RCOOH + CH2O | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
159 | MAO3+MO2 = RCOOH + CH2O | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
160 | GLCO3+MO2 = RCOOH + CH2O | 1.87E-13 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
161 | INPN+OH = INO2 | 3.80E-12 exp(200/T) | DeMore,reported in Horowitz as MP+OH | ||
162 | PRPN+OH = PRN1 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
163 | ETP+OH = 0.50OH+ 0.50ETO2+0.50ALD2 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
164 | RA3P+OH = 0.50OH + 0.50A3O2+0.50RCHO | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
165 | RB3P + OH = 0.5OH + 0.5B3O2 + 0.5ACET | 3.80E-12 exp(200/T) | JPL97,MP+OH;DBM,lumping from MCM3.1 | ||
166 | R4P+OH = 0.50OH+0.50R4O2 + 0.50RCHO | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
167 | RP+OH = 0.50OH+0.50RCO3+0.50ALD2 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
168 | PP + OH = PO2 | 3.80E-12 exp(200/T) | JPL97,MP+OH;DBM(MCM 3.1) | ||
169 | GP + OH = GCO3 | 3.80E-12 exp(200/T) | DBM(MCM 3.1) | ||
170 | GLP+OH = 0.50OH+0.50GLCO3+0.50CO | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
171 | RIP + OH = 0.509IALD + 0.509OH + 0.491RIO2 | 3.80E-12 exp(200/T) | JPL97,MP+OH;DBM,lumping from MCM3.1 | ||
172 | IAP + OH = IAO2 | 3.80E-12 exp(200/T) | JPL97,MP+OH; DBM (MCM3.1) | ||
173 | ISNP+OH = 0.50OH+0.50RCHO+0.50NO2+0.50ISN1 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
174 | VRP+OH = 0.50OH+0.50RCHO+0.50VRO2 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
175 | MRP + OH = MRO2 | 3.80E-12 exp(200/T) | JPL97,MP+OH;DBM(MCM 3.1) | ||
176 | MAOP + OH = MAO3 | 3.80E-12 exp(200/T) | JPL97,MP+OH;DBM(MCM 3.1) | ||
177 | OH+MAP = 0.50OH+0.50CH2O + 0.50MCO3 | 3.80E-12 exp(200/T) | JPL97,MP+OH | ||
178 | C2H6+NO3 = ETO2+HNO3 | 1.40E-18 | Atkinson,92 | ||
179 | MNO3+OH =CH2O+NOMNO32 | 8.0E-13exp(-1000/T) | JPL06 | JMAO, The product is NO2 in the input file instead of NOMNO32. | |
180 | IALD+OH = 0.44IAO2 +0.41MAO3+0.15HO2 | 3.70E-11 | Paulson &Seinfeld, 92 | ||
181 | IALD+O3 = 0.60MGLY + 0.10OH + 0.12CH2O + 0.28GLYC + 0.30O3 + 0.40CO + 0.20H2 + 0.20HAC + 0.20HCOOH | 6.16E-15 exp(-1814/T) | Paulson &Seinfeld, 92 | MCO3+NO,MCO3,HO2,RCO3,GCO3,MAO3,GLCO3 rates are used for other radicals. | |
182 | MCO3+MCO3 = 2MO2 | 2.50E-12 exp(500/T) | Tyndall; See note 6. | RCO3+HO2 same as MCO3+HO2, RCO3+NO same as MCO3+NO, RCO3+MCO3 same asMCO3+MCO3 | |
183 | MCO3+MO2 = CH2O+MO2+HO2 | 1.80E-12 exp(500/T) | Tyndall | ||
184 | MCO3+MO2 = ACTA +CH2O | 2.00E-13 exp(500/T) | Tyndall | ||
185 | R4O2+MCO3 = MO2 +0.32ACET + 0.19MEK + 0.18MO2 + 0.27HO2 + 0.32ALD2 + 0.13RCHO + 0.05A3O2 + 0.18B3O2 + 0.32ETO2 | 1.68E-12 exp(500/T) | T dep & B.R.Tyndall K298Villenave 98 See note 12 | ||
186 | ATO2+MCO3 = MO2 +0.8HO2+0.2CH2O+0.2MCO3+0.8MGLY | 1.68E-12 exp(500/T) | Ibid. | ||
187 | KO2+MCO3 = MO2 +ALD2+MCO3 | 1.68E-12 exp(500/T) | Ibid. | ||
188 | RIO2+MCO3 = MO2+0.864HO2+0.690CH2O +0.402MVK+0.288MACR+0.136RIO1+0.127IALD | 1.68E-12 exp(500/T) | Ibid. | ||
189 | RIO1+MCO3 = MO2 +IALD+HO2+0.75CH2O | 1.68E-12 exp(500/T) | Ibid. | ||
190 | IAO2+MCO3 = MO2 + HO2 + 0.65CO + 0.18H2 + 0.36HAC + 0.26GLYC + 0.58MGLY + 0.4CH2O | 1.68E-12 exp(500/T) | Ibid. | ||
191 | ISN1+MCO3 = MO2+NO2+GLYC+HAC | 1.68E-12 exp(500/T) | Ibid. | ||
192 | VRO2+MCO3 = MO2+0.28HO2+0.28CH2O+0.72MCO3+0.72GLYC+0.28MGLY | 1.68E-12 exp(500/T) | Ibid. | ||
193 | MRO2+MCO3 = MO2+HO2+0.17MGLY+0.83HAC+0.83CO+0.17CH2O | 1.68E-12 exp(500/T) | Ibid. | ||
194 | B3O2+MCO3 = MO2+HO2+ACET | 1.68E-12 exp(500/T) | Ibid. | ||
195 | R4N1+MCO3 = MO2+NO2+0.39CH2O+0.75ALD2+0.57RCHO+0.30R4O2 | 1.68E-12 exp(500/T) | Ibid. | ||
196 | MVN2+MCO3 = MO2 +NO2+CH2O+0.5MCO3+0.5MGLY+0.5HO2 | 1.68E-12 exp(500/T) | Ibid. | ||
197 | MAN2+MCO3 = MO2 +NO2+CH2O+MGLY | 1.68E-12 exp(500/T) | Ibid. | ||
198 | INO2+MCO3 = MO2 +0.10NO2 + 0.80HO2 +0.85HNO3 + 0.05NO2 +0.10MACR + 0.15CH2O +0.05MVK | 1.68E-12 exp(500/T) | Ibid. | ||
199 | PRN1+MCO3 = MO2 +NO2+CH2O+ALD2 | 1.68E-12 exp(500/T) | Ibid. | ||
200 | R4O2+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
201 | ATO2+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
202 | KO2+MCO3 = MEK + ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
203 | RIO2+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
204 | RIO1+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
205 | IAO2+MCO3 = MEK+ ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
206 | VRO2+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
207 | MRO2+MCO3 = MEK +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
208 | R4N1+MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
209 | ISN1+MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
210 | MVN2+MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
211 | MAN2+MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
212 | INO2+MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
213 | PRN1 + MCO3 = RCHO +ACTA + NO2 | 1.87E-13 exp(500/T) | Ibid. | ||
214 | B3O2+MCO3 = ACET +ACTA | 1.87E-13 exp(500/T) | Ibid. | ||
215 | MCO3+ETO2 = MO2+ALD2+HO2 | 1.68E-12 exp(500/T) | Ibid. | ||
216 | MCO3+ETO2 = ACTA +ALD2 | 1.87E-13 exp(500/T) | Ibid. | ||
217 | RCO3+MCO3 = MO2 + ETO2 | 2.50E-12 exp(500/T) | Tyndall,MCO3+MCO3 | ||
218 | GCO3+MCO3 = MO2 + HO2+ CH2O | 2.50E-12 exp(500/T) | Tyndall,MCO3+MCO3 | ||
219 | MAO3+MCO3 = MO2 + CH2O + MCO3 | 2.50E-12 exp(500/T) | Tyndall,MCO3+MCO3 | ||
220 | GLCO3+MCO3 = MO2+ HO2+ CO | 2.50E-12 exp(500/T) | Tyndall,MCO3+MCO3 | ||
221 | NO3+NO3 = 2NO2 + O2 | 8.50E-13 exp(-2450/T) | JPL 06 | ||
222 | HO2 = 0.50H2O2 | gamma=2E-1 | Jacob, 2000 | ||
223 | NO2 = 0.50HNO3 +0.50HNO2 | gamma=1E-4 | Jacob, 2000 | ||
224 | NO3 = HNO3 | gamma=1E-3 | Jacob, 2000 | ||
225 | N2O5 = 2HNO3 | gamma=fct(aerosol type, rh,temp) | Evans et al., 2005 | ||
226 | DMS+OH = SO2+MO2+CH2O | 1.1E-11exp(-240/T) | JPL06 | JMAO | |
227 | DMS+OH+O2 = 0.75SO2+0.25MSA+MO2 | K1=1.0E-39exp(5820/T); K2=5.0E-30exp(6280/T); K=K1*[O2]/(1.0+K2*[O2]) | JPL06 | MJE | |
228 | DMS+NO3 = SO2+HNO3 +MO2+CH2O | 1.90E-13 exp(500/T) | JPL2003 | ||
229 | SO2+OH+M = SO4+HO2 | LPL: 3.30E-31(300/T)^4.3; HPL:1.60E-12; Fc: 0.6 | JPL06 | JMAO | |
230 | MAO3 + NO=MCO3 + CH2O + NO2 | 6.7E-12exp(340/T) | IUPAC2006 | Palmer, May, JMAO:This reaction doesn't exist in the manual but is in the input The rate is from IUPAC2006 (or 2003), using the rate of CH3CH2C(O)O2+NO=C2H5C(O)O+NO2. | |
231 | RIO1+NO = NO2 + IALD + HO2 + 0.75 CH2O | K* (1-YN) where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=5.00E00) | Atkinson 97 | ||
232 | RIO1+NO=HNO3 | K* YN where YN is returned from fyrno3.f ;K=2.7E-12 exp(350/T) (Xcarbn=5.00E00) | Atkinson 97 | ||
233 | PMN + OH = NO2 + 0.590HAC + 2.0HO2 + 2.230CH2O | 3.20E-11 | |||
234 | PMN + O3 = NO2 + 0.60CH2O + HO2 | 8.2E-18 | |||
235 | GLYC+OH =0.8GCO3+0.4CO+0.2H2+0.2HO2 | 1.0E-11 | |||
236 | PRPE+NO3=PRN1 | 4.59E-13 exp(-1156/T) |
Note 12:k 298 = 1e-11cm3 molec-1. Use T dep. From MCO3+MO2 according to Tyndall, and apply branching ratio from Tyndall. Keeping rate constant at 298K equal to 1E-11,means that A factor is 1.87E-12. Branching ratio from Tyndall sends 90% to the radical branch(A = 0.9*1.87E-12 = 1.68E-12), and 10% to molecular branch (A = 0.1* 1.87E-12 =1.87E-13).
--Jmao 21:52, 30 June 2011 (EDT)