Updating standard chemistry with JPL 10-6: Difference between revisions

From Geos-chem
Jump to navigation Jump to search
m (→‎Reactions: Added a reference for the rate constant of reaction 178.)
 
(29 intermediate revisions by 5 users not shown)
Line 1: Line 1:
This page is intended to incorporate the latest version of [http://jpldataeval.jpl.nasa.gov/pdf/JPL%2010-6%20Final%2015June2011.pdf JPL chemical kinetics] (June 15, 2011) into GC standard chemistry.
This page is intended to incorporate the latest version of [http://jpldataeval.jpl.nasa.gov/pdf/JPL%2010-6%20Final%2015June2011.pdf JPL chemical kinetics] (June 15, 2011) into GC standard chemistry.
 
<span style="color:green">'''''This update was included in [[GEOS-Chem v9-02 benchmark history#v9-02f|GEOS-Chem v9-02f]] (accepted 07 Feb 2013).'''''</span>


==Standard Chemistry==
==Standard Chemistry==
===For Consideration===
===For Consideration===
Below is a list of reactions that were updated in the JPL 10-6 document.  Note that the temperature sensitivity value, E/R, is entered following JPL format, so the sign is opposite of the GEOS-Chem format.


{| border="1" cellpadding="2"
<span style="color:green">'''''This update was tested in the 1-month benchmark simulation [[GEOS-Chem_v9-02_benchmark_history#v9-02f|v9-02f]] and approved on 07 Feb 2013.'''''</span>
|-
 
| width="300pt" |'''Reaction'''
Below is a list of reactions that are being updated based on the JPL 10-6 document.  Note that the temperature sensitivity value, E/R, is entered following JPL format, so the sign is opposite of the GEOS-Chem format.  The updates will be tested in the benchmark before they are recommended by the working group.
| width="20pt" |'''A'''
 
| width="50pt" |'''E/R'''
{| border="1" cellspacing="0" cellpadding="5"
| width="*" |'''Description'''
|-bgcolor="#cccccc"
!width="250pt"|'''Reaction'''
!width="210pt"|'''A'''
!width="100pt"|'''E/R'''
!'''Description'''
|-
|-
| HO2 + HO2 -> H2O2 + O2 || 3.0e–13 || -460 || Updated rate
| HO2 + HO2 -> H2O2 + O2 || 3.0e–13 || -460 || Updated rate
Line 29: Line 34:
|-
|-
| C2H6 + OH -> products || 7.66e-12 || 1020 || Updated rate, assuming products do not change
| C2H6 + OH -> products || 7.66e-12 || 1020 || Updated rate, assuming products do not change
|-
| DMS + OH -> products || 1.2e-11 || 280 || Updated rate, assuming products do not change
|-
| DMS + OH + O2 -> products || 8.20E-39 and 1.05E-05 || -5376 and -3644 || Updated rate, assuming products do not change (E/R values in comment are plus, but to be consistent with JPL tables, I entered them here as negative.  This reaction also had an update to the parametrization.  Was: 1 + A * [O2] exp(-(E/R)T); Now: 1 + A * [O2]/[M] * exp(-(E/R)/T) where [O2]/[M] = 0.2095.
|-
| DMS + NO3 -> products || 1.9e-13 || -530 || Updated rate, assuming products do not change
|-
|-
| O3 + hv -> OH + HO2 || j<sub>O3</sub> *  1.2e-10 / k<sup>1</sup><sub>O1D</sub> || 0 || This reaction was added to account for the reaction of O1D with H2, which was previously not explicitly included.  k<sup>1</sup><sub>O1D</sub> is the pseudo-first order rate of O1D reaction with H2, H2O, O2, and N2.  Because H2 was previously left out of k<sup>1</sup><sub>O1D</sub>, ozone photolysis was producing extra OH and the radical budget was mostly conserved.
| O3 + hv -> OH + HO2 || j<sub>O3</sub> *  1.2e-10 / k<sup>1</sup><sub>O1D</sub> || 0 || This reaction was added to account for the reaction of O1D with H2, which was previously not explicitly included.  k<sup>1</sup><sub>O1D</sub> is the pseudo-first order rate of O1D reaction with H2, H2O, O2, and N2.  Because H2 was previously left out of k<sup>1</sup><sub>O1D</sub>, ozone photolysis was producing extra OH and the radical budget was mostly conserved.
Line 35: Line 46:
|-
|-
| O1D -> products || k<sup>1</sup><sub>O1D</sub> || 0 ||  This reaction is included in stead-state photolysis of O3, and is not added to the mechanism.  This entry has been added to the table as a place to describe k<sup>1</sup><sub>O1D</sub> = 1.2e-10 * [H2] + 1.63e-10 * exp(60/T) * [H2O] + 2.15e-11 * exp(110/T) * [N2] + 3.30e-11 * exp(55/T) * [O2]
| O1D -> products || k<sup>1</sup><sub>O1D</sub> || 0 ||  This reaction is included in stead-state photolysis of O3, and is not added to the mechanism.  This entry has been added to the table as a place to describe k<sup>1</sup><sub>O1D</sub> = 1.2e-10 * [H2] + 1.63e-10 * exp(60/T) * [H2O] + 2.15e-11 * exp(110/T) * [N2] + 3.30e-11 * exp(55/T) * [O2]
|-
| EOH + OH -> products || 3.35e-12 || n/a  || Updated rate, assuming products do not change
|-
| ACTA + OH -> products || 3.15e-14 || 920  || Updated rate, assuming products do not change
|-
|-
|}
|}




Perhaps we should consider adding O1D + H2 -> OH + H (A=1.2e-10).  The reaction rate could be added to the parametrization of O3 photolysis to 2 OH.  This reaction is included in other chemical mechanisms (e.g., Carbon Bond 05 and MOZART4).
'''--Barron Henderson 2011/07/12'''  
 
'''--Barron Henderson 2011/06/30'''  




'''Mat Evans comments:'''  
'''Mat Evans comments:'''  
Great work Jingqiu. We should updating all of these for a GC update.  
:Great work Jingqiu. We should updating all of these for a GC update. We should also think about changing the safety value (if any of the input parameters <= 0) in the ARSL1K routine to be 1e-30 rather than 1e-3
We should also think about changing the safety value (if any of the input parameters <= 0) in the ARSL1K routine to be 1e-30 rather than 1e-3


O1D+H2: Yep we should put this into the O1D steady state. This should be easy
:O1D+H2: Yep we should put this into the O1D steady state. This should be easy


Didn't the DMS + NO3 and the DMS + OH reaction rates change? The DMS scheme in the model is fairly old. We might want to see if anybody is looking at this....
:Didn't the DMS + NO3 and the DMS + OH reaction rates change? The DMS scheme in the model is fairly old. We might want to see if anybody is looking at this....


I'll contact Stan Sander and ask why the NO2+OH rate constant wasn't updated to the science paper version?
:I'll contact Stan Sander and ask why the NO2+OH rate constant wasn't updated to the science paper version?


==Evaluation==
{| border="1" cellspacing="0" cellpadding="5"
|-bgcolor="#cccccc"
!width="100pt" |'''Reaction'''
!width="200pt" |'''old'''
!width="400pt" |'''new'''
!width="200pt" |'''compare'''
|-
| HO2+HO2 || K1=3.50E-13 exp(430/T); K2=1.70E-33 [M]exp(1000/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T) || K1=3.00E-13 exp(460/T); K2=2.10E-33 [M]exp(920/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T))||[[Image:HO2_HO2.png|thumb|center|100px|]]water enhancement factor is not shown here as it doesn't change from JPL06 to JPL11
|-
| HO2+NO ||3.50E-12 exp(250/T)||3.3e-12 exp(270/T)||[[Image:HO2_NO.png|thumb|center|100px]]
|-
| ISOP+OH ||2.7E-11exp(390/T)||3.1E-11exp(350/T)||[[Image:ISOP_OH.png|thumb|center|100px]]
|-
| ISOP+NO3 ||3.15E-12 exp(-450/T) ||3.3E-12exp(-450/T)||[[Image:ISOP_NO3.png|thumb|center|100px]]
|-
| ISOP+O3 ||1.05E-14 exp(-2000/T) ||1.0E-14exp(-1970/T)||[[Image:ISOP_O3.png|thumb|center|100px]]
|-
| ALD2+OH ||4.4 E-12exp(365/T) ||4.63E-12exp(350/T)||[[Image:ALD2_OH.png|thumb|center|100px]]
|-
| C2H6+OH ||8.7E-12 exp(-1070/T) ||7.66E-12exp(-1020/T)||[[Image:C2H6_OH.png|thumb|center|100px]]
|-
| EOH+OH ||6.90E-12exp(-230/T) ||3.35e-12||[[Image:EOH_OH.png|thumb|center|100px]]
|-
| ACTA+OH ||4.20E-14exp(855/T) ||3.15e-14exp(920/T)||[[Image:ACTA_OH.png|thumb|center|100px]]
|-
| O1D+H2 || N/A || ([O1D]*[H2]+[O1D]*[H2O]) / ([O1D]*[H2]+[O1D]*[H2O]+[O1D][N2]+[O1D][O2])||[[Image:O1D_H2.png|thumb|center|100px]]Here I assume 0.1% RH and 500ppb H2.
|-
| DMS+OH ||1.1E-11exp(-240/T) ||1.2E-11exp(-280/T)||[[Image:DMS_OH.png|thumb|center|100px]]
|-
| DMS+OH+O2 ||K1=1.0E-39exp(5820/T); K2=5.0E-30exp(6280/T); K=K1*[O2]/(1.0+K2*[O2])||K1=8.2E-39exp(5376/T); K2=1.05E-5exp(3644/T); K=K1*[O2]/(1.0+K2*0.2095)||[[Image:DMS_OH_O2.png|thumb|center|100px]]
|-
| DMS+NO3||1.90E-13 exp(500/T) ||1.90E-13 exp(530/T)||[[Image:DMS_NO3.png|thumb|center|100px]]
|}
Notes:
1. '''DMS+OH+O2 is quite different in JPL11.'''
2. '''The changes in HO2+HO2 and HO2+NO might be responsible for the increase of ozone.'''
--[[User:Jmao|Jmao]] 17:40, 14 July 2011 (EDT)
==current standard chemistry==
===Species===
===Species===
{| border="1" cellpadding="2"
{| border="1" cellspacing="0" cellpadding="5"
|-
|-bgcolor="#cccccc"
| width="100pt" |'''Species'''
! width="100pt" |'''Species'''
| width="200pt" |'''Formula'''
! width="200pt" |'''Formula'''
| width="400pt" |'''Note'''
! width="400pt" |'''Note'''
|-
|-
|A3O2 ||CH3CH2CH2OO ||primary RO2 from C3H8
|A3O2 ||CH3CH2CH2OO ||primary RO2 from C3H8
Line 209: Line 263:
|PRN1 ||O2NOCH2CH(OO)CH3 ||RO2 from propene + NO3
|PRN1 ||O2NOCH2CH(OO)CH3 ||RO2 from propene + NO3
|-
|-
|PRPE ||C3H6 ||≥C4 alkenes
|PRPE ||C3H6 ||≥C3 alkenes
|-
|-
|PRPN ||O2NOCH2CH(OOH)CH3 ||peroxide from PRN1
|PRPN ||O2NOCH2CH(OOH)CH3 ||peroxide from PRN1
Line 219: Line 273:
|R4O2 ||RO2 from ALK4         ||RO2 from ALK4
|R4O2 ||RO2 from ALK4         ||RO2 from ALK4
|-
|-
|R4P ||peroxide from R4O2 ||peroxide from R4O2
|R4P ||CH3CH2CH2CH2OOH ||peroxide from R4O2
|-
|-
|RA3P ||peroxide from A3O2 ||peroxide from A3O2
|RA3P ||CH3CH2CH2OOH ||peroxide from A3O2
|-
|-
|RB3P ||peroxide from B3O2 ||peroxide from B3O2
|RB3P ||CH3CH(OOH)CH3 ||peroxide from B3O2
|-
|-
|RCHO ||CH3CH2CHO       ||>C2 aldehydes
|RCHO ||CH3CH2CHO       ||>C2 aldehydes
Line 251: Line 305:
|SO4 ||SO4 ||sulfate radical
|SO4 ||SO4 ||sulfate radical
|-
|-
|MSA ||CH4SO3 ||methylsulfonic acid
|MSA ||CH4SO3 ||methanesulfonic acid
|}
|}


===Reactions===
===Reactions===
{| border="1" cellpadding="2"
{| border="1" cellspacing="0" cellpadding="5"
|-
|-bgcolor="#cccccc"
| width="100pt" |'''No'''
! width="100pt" |'''No'''
| width="400pt" |'''Reaction'''
! width="400pt" |'''Reaction'''
| width="400pt" |'''Rate Constant'''
! width="400pt" |'''Rate Constant'''
| width="400pt" |'''Reference'''
! width="400pt" |'''Reference'''
| width="400pt" |'''Note'''
! width="400pt" |'''Note'''
|-
|-
|1 ||NO + O3 = NO2 + O2 ||3.00E-12 exp(-1500/T) ||JPL06 ||
|1 ||NO + O3 = NO2 + O2 ||3.00E-12 exp(-1500/T) ||JPL06 ||
Line 467: Line 521:
|98 ||B3O2+HO2 = RB3P ||7.40E-13 exp(700/T) ||Tyndall ||
|98 ||B3O2+HO2 = RB3P ||7.40E-13 exp(700/T) ||Tyndall ||
|-
|-
|99 ||NO2 + HO2 = INPN ||7.40E-13 exp(700/T) ||Tyndall ||
|99 ||INO2 + HO2 = INPN ||7.40E-13 exp(700/T) ||Tyndall ||
|-
|-
|100 ||PRN1 + HO2 = PRPN ||7.40E-13 exp(700/T) ||Tyndall ||
|100 ||PRN1 + HO2 = PRPN ||7.40E-13 exp(700/T) ||Tyndall ||
Line 623: Line 677:
|177 ||OH+MAP = 0.50OH+0.50CH2O + 0.50MCO3 ||3.80E-12 exp(200/T) ||JPL97,MP+OH ||
|177 ||OH+MAP = 0.50OH+0.50CH2O + 0.50MCO3 ||3.80E-12 exp(200/T) ||JPL97,MP+OH ||
|-
|-
|178 ||C2H6+NO3 = ETO2+HNO3 ||1.40E-18 ||Atkinson,92 ||
|178 ||C2H6+NO3 = ETO2+HNO3 ||1.40E-18 ||Atkinson et al. 2004 (See note 13 below) ||
|-
|-
|179 ||MNO3+OH =CH2O+NOMNO32 ||8.0E-13exp(-1000/T) ||JPL06 ||JMAO, The product is NO2 in the input file instead of NOMNO32.
|179 ||MNO3+OH =CH2O+NOMNO32 ||8.0E-13exp(-1000/T) ||JPL06 ||JMAO, The product is NO2 in the input file instead of NOMNO32.
Line 741: Line 795:
|236 ||PRPE+NO3=PRN1    ||4.59E-13 exp(-1156/T)  ||  ||  
|236 ||PRPE+NO3=PRN1    ||4.59E-13 exp(-1156/T)  ||  ||  
|}
|}
Note 10.RO2 primary+MO2: following madronich & calvert: K(RO2+MO2) = 2*sqrt(k(MO2+MO2)*k(RO2+RO2)).
Note 11.RO2 secondary+MO2: same calculation as in note 10, but with the updated MO2+MO2 rate.


Note 12:k 298 = 1e-11cm3 molec-1. Use T dep. From MCO3+MO2 according to Tyndall, and apply branching ratio from Tyndall. Keeping rate constant at 298K equal to 1E-11,means that A factor  is 1.87E-12. Branching ratio from Tyndall sends 90% to the radical branch(A = 0.9*1.87E-12 = 1.68E-12), and 10% to molecular branch (A = 0.1* 1.87E-12 =1.87E-13).
Note 12:k 298 = 1e-11cm3 molec-1. Use T dep. From MCO3+MO2 according to Tyndall, and apply branching ratio from Tyndall. Keeping rate constant at 298K equal to 1E-11,means that A factor  is 1.87E-12. Branching ratio from Tyndall sends 90% to the radical branch(A = 0.9*1.87E-12 = 1.68E-12), and 10% to molecular branch (A = 0.1* 1.87E-12 =1.87E-13).
Note 13. Atkinson et al. (2004) gives k298 = <1x10^-17, which encompasses 1.4x10^-18.


--[[User:Jmao|Jmao]] 21:52, 30 June 2011 (EDT)
--[[User:Jmao|Jmao]] 21:52, 30 June 2011 (EDT)

Latest revision as of 18:21, 9 March 2016

This page is intended to incorporate the latest version of JPL chemical kinetics (June 15, 2011) into GC standard chemistry.

This update was included in GEOS-Chem v9-02f (accepted 07 Feb 2013).

Standard Chemistry

For Consideration

This update was tested in the 1-month benchmark simulation v9-02f and approved on 07 Feb 2013.

Below is a list of reactions that are being updated based on the JPL 10-6 document. Note that the temperature sensitivity value, E/R, is entered following JPL format, so the sign is opposite of the GEOS-Chem format. The updates will be tested in the benchmark before they are recommended by the working group.

Reaction A E/R Description
HO2 + HO2 -> H2O2 + O2 3.0e–13 -460 Updated rate
HO2 + HO2 + M -> H2O2 + O2 2.1e-33 -920 Updated rate
HO2 + HO2-H2O -> products 5.4e–11 410 Not directly used; this is a reaction that explains the water enhancement used in calcrate.f
HO2 + NO -> NO2 + OH 3.3e-12 -270 Update rate
ISOP + NO3 -> products 3.3e-12 450 Updated rate, assuming products do not change
ISOP + OH -> products 3.1e-11 -350 Updated rate, assuming products do not change
ISOP + O3 -> products 1e-14 1970 Updated rate, assuming products do not change
ALD2 + OH -> products 4.63e-12 -350 Updated rate, assuming products do not change
C2H6 + OH -> products 7.66e-12 1020 Updated rate, assuming products do not change
DMS + OH -> products 1.2e-11 280 Updated rate, assuming products do not change
DMS + OH + O2 -> products 8.20E-39 and 1.05E-05 -5376 and -3644 Updated rate, assuming products do not change (E/R values in comment are plus, but to be consistent with JPL tables, I entered them here as negative. This reaction also had an update to the parametrization. Was: 1 + A * [O2] exp(-(E/R)T); Now: 1 + A * [O2]/[M] * exp(-(E/R)/T) where [O2]/[M] = 0.2095.
DMS + NO3 -> products 1.9e-13 -530 Updated rate, assuming products do not change
O3 + hv -> OH + HO2 jO3 * 1.2e-10 / k1O1D 0 This reaction was added to account for the reaction of O1D with H2, which was previously not explicitly included. k1O1D is the pseudo-first order rate of O1D reaction with H2, H2O, O2, and N2. Because H2 was previously left out of k1O1D, ozone photolysis was producing extra OH and the radical budget was mostly conserved.
O3 + hv -> OH + OH jO3 * 1.63e-10 * exp(60/T) / k1O1D 0 The addition of H2 to k1O1D reduces this reaction rate.
O1D -> products k1O1D 0 This reaction is included in stead-state photolysis of O3, and is not added to the mechanism. This entry has been added to the table as a place to describe k1O1D = 1.2e-10 * [H2] + 1.63e-10 * exp(60/T) * [H2O] + 2.15e-11 * exp(110/T) * [N2] + 3.30e-11 * exp(55/T) * [O2]
EOH + OH -> products 3.35e-12 n/a Updated rate, assuming products do not change
ACTA + OH -> products 3.15e-14 920 Updated rate, assuming products do not change


--Barron Henderson 2011/07/12


Mat Evans comments:

Great work Jingqiu. We should updating all of these for a GC update. We should also think about changing the safety value (if any of the input parameters <= 0) in the ARSL1K routine to be 1e-30 rather than 1e-3
O1D+H2: Yep we should put this into the O1D steady state. This should be easy
Didn't the DMS + NO3 and the DMS + OH reaction rates change? The DMS scheme in the model is fairly old. We might want to see if anybody is looking at this....
I'll contact Stan Sander and ask why the NO2+OH rate constant wasn't updated to the science paper version?

Evaluation

Reaction old new compare
HO2+HO2 K1=3.50E-13 exp(430/T); K2=1.70E-33 [M]exp(1000/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T) K1=3.00E-13 exp(460/T); K2=2.10E-33 [M]exp(920/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T))
HO2 HO2.png
water enhancement factor is not shown here as it doesn't change from JPL06 to JPL11
HO2+NO 3.50E-12 exp(250/T) 3.3e-12 exp(270/T)
HO2 NO.png
ISOP+OH 2.7E-11exp(390/T) 3.1E-11exp(350/T)
ISOP OH.png
ISOP+NO3 3.15E-12 exp(-450/T) 3.3E-12exp(-450/T)
ISOP NO3.png
ISOP+O3 1.05E-14 exp(-2000/T) 1.0E-14exp(-1970/T)
ISOP O3.png
ALD2+OH 4.4 E-12exp(365/T) 4.63E-12exp(350/T)
ALD2 OH.png
C2H6+OH 8.7E-12 exp(-1070/T) 7.66E-12exp(-1020/T)
C2H6 OH.png
EOH+OH 6.90E-12exp(-230/T) 3.35e-12
EOH OH.png
ACTA+OH 4.20E-14exp(855/T) 3.15e-14exp(920/T)
ACTA OH.png
O1D+H2 N/A ([O1D]*[H2]+[O1D]*[H2O]) / ([O1D]*[H2]+[O1D]*[H2O]+[O1D][N2]+[O1D][O2])
O1D H2.png
Here I assume 0.1% RH and 500ppb H2.
DMS+OH 1.1E-11exp(-240/T) 1.2E-11exp(-280/T)
DMS OH.png
DMS+OH+O2 K1=1.0E-39exp(5820/T); K2=5.0E-30exp(6280/T); K=K1*[O2]/(1.0+K2*[O2]) K1=8.2E-39exp(5376/T); K2=1.05E-5exp(3644/T); K=K1*[O2]/(1.0+K2*0.2095)
DMS OH O2.png
DMS+NO3 1.90E-13 exp(500/T) 1.90E-13 exp(530/T)
DMS NO3.png

Notes: 1. DMS+OH+O2 is quite different in JPL11.

2. The changes in HO2+HO2 and HO2+NO might be responsible for the increase of ozone.

--Jmao 17:40, 14 July 2011 (EDT)

current standard chemistry

Species

Species Formula Note
A3O2 CH3CH2CH2OO primary RO2 from C3H8
ACET CH3C(O)CH3 acetone
ACTA CH3C(O)OH acetic acid
ALD2 CH3CHO acetaldehyde
ALK4 RH ≥C4 alkanes
ATO2 CH3C(O)CH2O2 RO2 from acetone
B3O2 CH3CH(OO)CH3 secondary RO2 from C3H8
C2H6 C2H6 ethane
C3H8 C3H8 propane
CH2O CH2O formaldehyde
CH4 CH4 methane
CO CO carbon monoxide
CO2 CO2 carbon dioxide
DRYDEP generic entry for dry dep
EMISSION generic entry to do emissions
EOH C2H5OH ethanol
ETO2 CH3CH2OO ethylperoxy radical
ETP CH3CH2OOH ethylhydroperoxide
GLYC HOCH2CHO glycoaldehyde (hydroxyacetaldehyde)
GLYX CHOCHO glyoxal
H2 H2 hydrogen atom
H2O H2O water vapor
H2O2 H2O2 hydrogen peroxide
HAC HOCH2C(O)CH3 hydroxyacetone
HCOOH HCOOH formic acid
HNO2 HONO nitrous acid
HNO3 HNO3 nitric acid
HNO4 HNO4 pernitric acid
HO2 HO2 hydroperoxyl radical
IALD HOCH2C(CH3)=CHCHO hydroxy carbonyl alkenes from isoprene
IAP HOCH2C(CH3)(OOH)CH(OH)CHO peroxide from IAO2
INO2 O2NOCH2C(OO)(CH3)CH=CH2 RO2 from ISOP+NO3
INPN O2NOCH2C(OOH)(CH3)CH=CH2 peroxide from INO2
ISN2 CH2=C(CH3)CH(ONO2)CH2OH isoprene nitrtate
ISNO3 RONO2 stable organic nitrate
ISNP HOCH2C(OOH)(CH3)CH(ONO2)CH2OH peroxide from ISOPNBO2 and ISOPNDO2
ISOP CH2=C(CH3)CH=CH2 isoprene
KO2 RO2 from >3 ketones RO2 from >3 ketones
M for three body reactions
MACR CH2=C(CH3)CHO methacrolein
MAN2 HOCH2C(ONO2)(CH3)CHO RO2 from MACR+NO3
MAO3 CH2=C(CH3)C(O)OO peroxyacyl from MVK and MACR
MAOP CH2=C(CH3)C(O)OOH peroxide from MAO3
MAP CH3C(O)OOH peroxyacetic acid
MCO3 CH3C(O)OO peroxyacetyl radical
MEK RC(O)R >3 ketones
MGLY CH3COCHO methylglyoxyal
MNO3 CH3ONO2 methylnitrate
MO2 CH3O2 methylperoxy radical
MOH CH3OH methanol
MP CH3OOH methylhydroperoxide
MRO2 HOCH2C(OO)(CH3)CHO RO2 from MACR+OH
MRP HOCH2C(OOH)(CH3)CHO peroxide from MRO2
MVK CH2=CHC(O)CH3 methylvinylketone
N2 N2 nitrogen
N2O N2O nitrous oxide
N2O5 N2O5 dinitrogen pentoxide
NH2 NH2 ammonia radical
NH3 NH3 ammonia
NO NO nitric oxide
NO2 NO2 nitrogen dioxide
NO3 NO3 nitrate radical
O O oxygen atom (3P)
O1D O1D oxygen atom (1D)
O2 O2 molecular oxygen
O2CH2OH O2CH2OH produced by CH2O+HO2
O3 O3 ozone
OH OH hydroxyl radical
PAN CH3C(O)OONO2 peroxyacetylnitrate
PMN CH2=C(CH3)C(O)OONO2 peroxymethacryloyl nitrate (MPAN)
PO2 HOCH2CH(OO)CH3 RO2 from isoprene
PP HOCH2CH(OOH)CH3 peroxide from PO2
PPN CH3CH2C(O)OONO2 peroxypropionylnitrate
PRN1 O2NOCH2CH(OO)CH3 RO2 from propene + NO3
PRPE C3H6 ≥C3 alkenes
PRPN O2NOCH2CH(OOH)CH3 peroxide from PRN1
R4N1 RO2 from R4N2 RO2 from R4N2
R4N2 RO2NO ≥C4 alkylnitrates
R4O2 RO2 from ALK4 RO2 from ALK4
R4P CH3CH2CH2CH2OOH peroxide from R4O2
RA3P CH3CH2CH2OOH peroxide from A3O2
RB3P CH3CH(OOH)CH3 peroxide from B3O2
RCHO CH3CH2CHO >C2 aldehydes
RCO3 CH3CH2C(O)OO peroxypropionyl radical
RCOOH C2H5C(O)OH >C2 organic acids
RIO1 HOCH2C(OO)(CH3)CH=CHOH RO2 from isoprene oxidation products
RIO2 HOCH2C(OO)(CH3)CH=CH2 RO2 from isoprene
RIP HOCH2C(OOH)(CH3)CH=CH2 peroxide from RIO2
ROH C3H7OH >C2 alcohols
RP CH3CH2C(O)OOH peroxide from RCO3
VRO2 HOCH2CH(OO)C(O)CH3 RO2 from MVK+OH
VRP HOCH2CH(OOH)C(O)CH3 peroxide from VRO2
DMS (CH3)2S dimethylsulfide
SO2 SO2 sulfur dioxide
SO4 SO4 sulfate radical
MSA CH4SO3 methanesulfonic acid

Reactions

No Reaction Rate Constant Reference Note
1 NO + O3 = NO2 + O2 3.00E-12 exp(-1500/T) JPL06
2 O3+OH = HO2+O2 1.70E-12 exp(-940/T) JPL06
3 O3+HO2 = OH+2O2 1.00E-14 exp(-490/T) JPL06
4 O3+NO2 = O2+NO3 1.20E-13 exp(-2450/T) JPL06
5 O3+MO2 = CH2O+HO2+2O2 2.90E-16 exp(-1000/T) JPL06
6 OH+OH = H2O+O3 1.8E-12 JPL06 JMAO
7 OH+OH+M = H2O2 LPL: 6.9E-31(300/T); HPL: 2.60E-11; Fc:0.6 JPL06 JMAO
8 OH+HO2 = H2O + O2 4.80E-11 exp (250/T) JPL06 JMAO
9 OH+H2O2 = H2O + HO2 1.8E-12 JPL06 JMAO
10 HO2+NO = OH + NO2 3.50E-12 exp(250/T) JPL06
11 HO2+HO2 = H2O2 HO2+HO2+M=H2O2 K1=3.50E-13 exp(430/T); K2=1.70E-33 [M]exp(1000/T); K = (K1 + K2)*(1+1.4E-21*[H2O]*EXP(2200/T) JPL06 JMAO
12 OH+H2 = H2O + HO2 2.80E-12 exp(-1800/T) JPL06 JMAO
13 CO+OH = HOCO LPL: 5.9E-33(300/T)^1.4; HPL:1.1E-12(300/T)^-1.3; Fc:0.6 JPL06 JMAO(in calcrate.f) Ignore the intermediate species HOCO and use two 3-body reactions
HOCO + O2= HO2 + CO2 2.00E-12 JPL06
CO+OH=HO2+CO2 (different formula) LPL: 1.5E-13(300/T)^-0.6; HPL:2.10E9(300/T)^-6.1; Fc:0.6 JPL06
14 OH+ CH4 = MO2+H2O 2.45E-12exp(–1775/T) JPL06 JMAO:could also be 2.8E-14T^0.667 exp(–1575/T)
15 MO2+NO =CH2O+HO2+NO2 2.80E-12 exp(300/T) JPL06
16 MO2+HO2 = MP+O2 4.1E-13 exp(750/T) JPL06 JMAO
17 MO2+HO2 = CH2O + O2 N/A JPL06(P1-59,D35) JMAO:Not recommended in JPL06
18 MO2+MO2 =MOH+CH2O+O2 K1=9.5E-14 exp(390/T); K2=2.62E+1 exp(-1130/T); K=K1 / (1+K2) Tyndall 2001
19 MO2+MO2 = 2CH2O + 2HO2 K1=9.5E-14 exp(390/T); K2=4.00E-02exp(1130/T); K=K1 / (1+K2) Tyndall 2001
20 MP+OH = MO2+H2O 2.66E-12 exp(200/T) JPL06
21 MP+OH = CH2O+OH+H2O 1.14E-12 exp(200/T) JPL06
22 CH2O+OH = HCO +H2O 5.5E-12 exp(125/T) JPL06 JMAO(use the first rate)
HCO + O2 = CO + HO2 5.2E-12 JPL06
23 OH + NO2 + M = HONO2 LPL: 1.80E-30(300/T)^3; HPL:2.80E-11(300/T)^0; Fc:0.6 JPL06 JMAO: Ignore the HOONO channel for now.
OH + NO2 + M=HOONO LPL:9.10E-32(300/T)^3.9 ; HPL:4.20E-11(300/T)^0.5; Fc:0.6 JPL06
24 HNO3+OH = H2O+NO3 K0=2.41E-14 exp(460/T); K2=2.69E-17exp(2199/T); K3=6.51E-34exp(1335/T); K = K0 + K3[M] / (1 + K3[M]/K2) JPL06
25 NO+OH+M = HNO2+M LPL: 7.00E-31(300/T)^2.6; HPL: 3.60E-11(300/T)^0.1; Fc: 0.6 JPL06
26 HNO2+OH = H2O+NO2 1.80E-11 exp(-390/T) JPL06
27 HO2+NO2+M = HNO4+M LPL: 2.0E-31(300/T)^3.4; HPL:2.9E-12(300/T)^1.1; Fc= 0.6 JPL06 JMAO
28 HNO4+M = HO2+NO2 LPL: 9.52E-5(300/T)^3.4* exp(-10900/T); HPL:1.38E+15*(300/T)^1.1*exp(-10900/T); Fc=0.6 JPL06 JMAO:K=forward rxn/Keq; Keq=2.1E-27exp(10900/T);
29 HNO4+OH = H2O+NO2+O2 1.30E-12 exp(380/T) JPL06
30 NO+NO3=2NO2 1.50E-11 exp(170/T) JPL06
31 HO2+NO3 = OH+NO2+O2 3.50E-12 JPL06
32 OH+NO3 = HO2+NO2 2.20E-11 JPL06
33 NO2+NO3+M = N2O5+M LPL: 2.0E-30(300/T)^4.4; HPL:1.4E-12(300/T)^0.7; Fc=0.6 JPL06
34 N2O5+M = NO2+NO3 LPL: 7.4E-4(300/T)^4.4* exp(-11000/T); HPL:5.18E+14*(300/T)^0.7*exp(-11000/T); Fc=0.6 JPL06 JMAO :K=forwardrxn/ Keq; Keq = 2.70E-27exp(11000/T);
35 HCOOH+OH =H2O+CO2+HO2 4.00E-13 JPL06
36 MOH+OH = HO2+CH2O 2.9E-12 exp(-345/T) JPL06
37 NO2+NO3 = NO+NO2+O2 4.50E-14 exp(-1260/T) JPL06
38 NO3+CH2O = HNO3+HO2+CO 5.80E-16 JPL06
39 ALD2 + OH=H2O + 0.95 MCO3 + 0.05 CH2O + 0.05 CO + 0.05 HO2 4.4 E-12exp(365/T) IUPAC06 DBM (cannot find this reaction from JPL06)
40 ALD2+NO3 = HNO3+MCO3 1.40E-12 exp(-1900/T) JPL06 JMAO
41 MCO3+NO2+M = PAN LPL: 9.70E-29(300/T)^5.6; HPL:9.3E-12(300/T)^1.5; Fc: 0.6 JPL06 JMAO
42 PAN = MCO3+NO2 9.30E-29 exp(14000/T) IUPAC06 equilibrium with the one above
43 MCO3+NO = MO2+NO2+CO2 8.10E-12 exp(270/T) JPL06
44 C2H6+OH = ETO2+H2O 8.7E-12 exp(-1070/T) JPL06
45 ETO2+NO =ALD2+NO2+HO2 2.60E-12 exp(365/T) JPL06 JMAO
46 C3H8+OH = B3O2 K1=7.60e-12 exp(-585/T); K2=5.87*(300/T)^0.64exp(-816/T); K=K1 / (1+K2) IUPAC06 JMAO
C3H8+OH = A3O2 K1=7.60E-12 exp(-585/T); K2= 0.17*(300/T)^-0.64exp(816/T); K=K1 / (1+K2) IUPAC06 JMAO
47 A3O2+NO = NO2 + HO2 + RCHO 2.90E-12 exp(350/T) IUPAC06 JMAO
48 PO2+NO = NO2+HO2+CH2O+ALD2 2.70E-12 exp(350/T) Tyndall 2001 JGR
49 ALK4+OH = R4O2 9.10E-12 exp(-405/T) IUPAC06
50 R4O2+NO = NO2 +0.32ACET + 0.19MEK +0.18MO2 + 0.27HO2 +0.32ALD2 + 0.13RCHO +0.50A3O2 + 0.18B3O2 + 0.32ETO2 K* (1-YN) where YN isreturned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.50E00) Atkinson 97 A3O2 is 0.05 in the input file(Palmer)
51 R4O2+NO = R4N2 K* YN where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.50E00) Atkinson97
52 ATO2+NO = 0.96NO2 + 0.960CH2O +0.960MCO3 + 0.04R4N2 2.80E-12 exp(300/T) Tyndall
53 KO2+NO = 0.93NO2+ 0.93ALD2 +0.93MCO3 + 0.07R4N2 2.70E-12 exp(350/T) Tyndall ETO2+NO JMAO: there was a typo in last version, no yield of NO. (Bryan Duncan).
54 RIO2 + NO = 0.90NO2 + 0.90HO2 + 0.34IALD + 0.34MVK + 0.22MACR + 0.56CH2O 2.7E-12 exp(350/T) MCM3.1 DBM(MCM 3.1), this reaction was recently modified to turn off the other channel.
56 IAO2+NO = 0.92HO2 + 0.61CO + 0.17H2 + 0.33HAC + 0.24GLYC + 0.53MGLY + 0.92NO2 + 0.35CH2O + 0.08HNO3 2.7E-12 exp(350/T) Tyndall ETO2+NO
57 ISN1+NO = 1.9NO2+0.95GLYC+0.95HAC +0.05HNO3+0.05NO2+0.05HO2 2.7E-12 exp(350/T) Tyndall ETO2+NO; Paulson&Seinfeld 1992 HO2 term(Palmer, JMAO)
58 VRO2+NO = NO2+0.28HO2+0.28CH2O+0.72MCO3+0.72GLYC+0.28MGLY K* (1-YN) where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) Atkinson 97
59 VRO2+NO = HNO3 K* YN where YN is returned from fyrno3.f ;K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) Atkinson 97
60 MRO2 + NO = NO2 + HAC + CH2O + HO2 K* (1-YN) where YN is returned from fyrno3.f K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) DBM(MCM 3.1)
61 MRO2+NO = HNO3 K* YN where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=4.00E00) Atkinson 97
62 MVN2+NO = 1.90NO2 +0.30HO2+0.30CH2O+0.60MCO3+0.60GLYC+0.30MGLY+0.10HNO3 2.7E-12 exp(350/T)
63 MAN2+NO = 2NO2+CH2O+MGLY 2.7E-12 exp(350/T) Tyndall ETO2+NO
64 B3O2+NO = NO2+HO2+ACET 2.7E-12 exp(350/T)
65 INO2+NO = 1.10NO2+0.80HO2+0.85HNO3+0.05NO2+0.10MACR+0.15CH2O+0.05MVK 2.7E-12 exp(350/T) Tyndall ETO2+NO
66 PRN1+NO = 2NO2+CH2O+ALD2 2.7E-12 exp(350/T) Tyndall ETO2+NO
67 ALK4+NO3 = HNO3 + R4O2 2.8E-12 exp(-3280/T) IUPAC02
68 R4N2+OH = R4N1+H2O 1.6E-12 IUPAC06 JMAO: use the one from HO + 1-C4H9ONO2 → products
69 ACTA+OH = MO2+CO2++H2O 4.20E-14 exp(855/T) IUPAC06 JMAO
70 OH+RCHO= RCO3+H2O 6.0E-12exp(410/T) IUPAC06 JMAO: use the one from HO + CH3CH2CH2CHO → products
71 RCO3+NO2 = PPN LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 JPL06
72 PPN = RCO3+NO2 9e-29*exp(14000/T) JPL06
73 MAO3+NO2 = PMN LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 JPL06
74 PMN = MAO3+NO2 9e-29*exp(14000/T) JPL06 same as PPN
75 GLCO3+NO2 = GLPAN LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 JPL06 same as PPN
76 GLPAN = GLCO3+NO2 9e-29*exp(14000/T) JPL02 PPN
77 GCO3+NO2 = GPAN LPL: 9.00E-28(300/T)^8.9; HPL:7.70E-12(300/T)^0.2; Fc: 0.6 JPL02 Same as PPN
78 GPAN = GCO3+NO2N 9e-29*exp(14000/T) JPL02 PPN
79 RCO3+NO = NO2+ETO2 6.70E-12 exp(340/T) IUPAC06 C2H5CO3+NO
80 GCO3+NO = NO2+HO2 +CH2O 6.70E-12 exp(340/T) IUPAC06 C2H5CO3+NO
81 GLCO3+NO = NO2+HO2+CO 6.70E-12 exp(340/T) IUPAC06 C2H5CO3+NO
82 RCHO+NO3 = HNO3 +RCO3 6.5E-15 IUPAC06 use the one from NO3+C2H5CHO → HNO3 + C2H5CO
83 ACET+OH = ATO2 + H2O 1.33E-13+ 3.82E-11 exp(-2000/T) JPL 06 JMAO:Implemented as 2 reactions
84 A3O2+MO2 = HO2 +0.75CH2O+0.75RCHO+0.25MOH + 0.25ROH 5.92E-13 Tyndall RateMO2+MO2 Atkinson97RO2+RO2 K(RO2+MO2) = 2*sqrt(k(MO2+MO2)*k(RO2+RO2))
85 PO2+MO2 = HO2 + 0.5ALD2+1.25CH2O +0.16HAC + 0.09RCHO +0.25MOH + 0.25ROH 5.92E-13 Tyndall RateMO2+MO2 Atkinson97RO2+RO2
86 R4O2+HO2 = R4P 7.40E-13 exp(700/T) Tyndall
87 R4N1+HO2 = R4N2 7.40E-13 exp(700/T) Tyndall
88 ATO2+HO2 = MCO3 + MO2 8.60E-13 exp(700/T)
89 KO2+HO2 = MO2 + MGLY 7.40E-13 exp(700/T) Tyndall Tyndall forms CH3C(O)CH2OOH ,this must then split and go to MCO3+MO2, the products in chem..dat ??
90 RIO2+HO2 = RIP 7.40E-13 exp(700/T) Tyndall
91 RIO1+HO2 = RIP 7.40E-13 exp(700/T) Tyndall
92 IAO2 + HO2 = IAP 7.40E-13 exp(700/T) Tyndall
93 ISN1+HO2 = ISNP 7.40E-13 exp(700/T) Tyndall
94 VRO2+HO2 = VRP 7.40E-13 exp(700/T) Tyndall
95 MRO2+HO2 = MRP 7.40E-13 exp(700/T) Tyndall
96 MVN2 + HO2 = ISNP 7.40E-13 exp(700/T) Tyndall
97 MAN2 + HO2 = ISNP 7.40E-13 exp(700/T) Tyndall
98 B3O2+HO2 = RB3P 7.40E-13 exp(700/T) Tyndall
99 INO2 + HO2 = INPN 7.40E-13 exp(700/T) Tyndall
100 PRN1 + HO2 = PRPN 7.40E-13 exp(700/T) Tyndall
101 MEK+OH = KO2+H2O 1.3 E-12exp(-25/T) IUPAC06 JMAO
102 MO2+ETO2 = 0.75CH2O+0.75ALD2+HO2+0.25MOH+0.25EOH 3.00E-13 Horowitz 98, Atkinson 92& 94
103 MEK+NO3 = HNO3+ KO2 8.00E-16 Lurmann et al. 1986
104 R4O2+MO2 = 0.16ACET+0.10MEK+0.09MO2+0.14HO2+0.16ALD2 +0.07RCHO+0.03A3O2 +0.09B3O2+0.16ETO2+0.25MEK+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)
105 R4N1+MO2 = NO2+0.20CH2O+0.38ALD2 + 0.29RCHO+0.15R4O2+ 0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)
106 ATO2+MO2 = 0.30HO2+0.30CH20+0.30MCO3+0.20HAC+0.20CH2O+0.50MGLY+0.50MOH 7.5E-13 exp(500/T) Tyndall,2001
107 KO2+MO2 = 0.5ALD2 +0.50MCO3+0.25MEK+0.75CH2O+0.25MOH+0.25ROH+0.5HO2 8.37E-14
108 RIO2+MO2 = 0.42HO2 +0.35CH2O+0.2MVK +0.14MACR + 0.07RIO1 +0.06IALD+0.25MEK+0.75CH2O+0.25MOH+0.25ROH + 0.5HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) HO2 term is 0.43 in input file, need to be changed back to 0.42(Palmer, JMAO)
109 RIO1+MO2 = 0.50IALD+0.50HO2+0.38CH2O+0.25MEK+0.75CH2O+0.25MOH+0.25ROH+ 0.5HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)
110 IAO2+MO2 = 0.50HO2 + 0.33CO + 0.09H2 + 0.18HAC + 0.13GLYC + 0.29MGLY + 0.25MEK + 0.95CH2O + 0.25MOH + 0.25ROH + 0.5HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)
111 ISN1+MO2 = NO2+0.50GLYC+0.50HAC+0.25RCHO+0.75CH2O+0.25MOH+ 0.25ROH+0.50HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)
112 VRO2+MO2 = 0.14HO2 + 0.14CH2O + 0.36MCO3 + 0.36GLYC + 0.14MGLY + 0.25MEK + 0.75CH2O + 0.25MOH + 0.25ROH + 0.50HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)
113 MRO2 + MO2 = HAC + 0.85CH2O + 1.15HO2 + 0.15CO 8.37E-14 DBM(MCM 3.1)
114 MVN2+MO2 = NO2+0.50CH2O+0.25MCO3 +0.25MGLY+0.25HO2+0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)
115 MAN2+MO2= NO2+0.50CH2O+0.50MGLY+0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)
116 B3O2+MO2 = 0.50HO2+0.50ACET+0.25ACET +0.75CH2O+0.25MOH+0.25ROH+0.50HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)
117 INO2+MO2 = 0.55NO2 + 0.40HO2 + 0.425HNO3 + 0.025NO2 + 0.05MACR + 0.08CH2O + 0.03MVK + 0.25RCHO + 0.75CH2O + 0.25MOH + 0.25ROH + 0.05HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below) NISOPO2(in MCM), HO2 term is 0.5 in the input file, need to be fixed. (Palmer, JMAO)
118 PRN1+MO2 = NO2+0.50CH2O+ 0.50ALD2+0.25RCHO+0.75CH2O+0.25MOH+0.25ROH+0.50HO2 8.37E-14 Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)
119 EOH+OH = HO2+ALD2 6.90E-12 exp(-230/T) JPL02
120 ROH+OH = HO2+RCHO 4.6E-12 exp(70/T) IUPAC06 not in JPL06
121 ETO2+ETO2 = 2ALD2 +2HO2 4.10E-14 JPL06
122 ETO2+ETO2 = EOH + ALD2 2.70E-14 JPL06
123 HO2+ETO2 = ETP 7.40E-13 exp(700/T) Tyndall (see note 4)
124 A3O2+HO2 = RA3P 7.40E-13 exp(700/T) Tyndall
125 PO2+HO2 = PP 7.40E-13 exp(700/T) Tyndall
126 MCO3 + HO2 = 0.15 ACTA + 0.15 O3 + 0.44 OH + 0.44 MO2 + 0.41 MAP 5.2e-13exp(980/T) IUPAC(Feb2009) DBM
128 RCO3+HO2=0.3RCOOH+0.3O3+ 0.7RP 4.30E-13 exp(1040/T)
129 GCO3 + HO2 = 0.71GP + 0.29O3 + 0.29CH2O 4.30E-13 exp(1040/T) DBM(MCM 3.1)
130 MAO3+HO2=0.3RCOOH+0.3O3 + 0.7MAOP 4.30E-13 exp(1040/T)
131 GLCO3+HO2=0.3RCOOH+0.3O3+0.7GLP 4.30E-13 exp(1040/T)
132 PRPE+OH+M = PO2 LPL: 8.00E-27(300/T)^3.5;HPL:3.00E-11(300/T); Fc: 0.5 IUPAC06 JMAO
133 PRPE+O3 = 0.535CH2O+0.500ALD2+0.420CO+0.300HO2+0.135OH+0.065H2+0.305MO2 5.50E-15 exp(-1880/T) IUPAC06 JMAO
134 GLYX+OH = HO2+2CO 1.1E-11 IUPAC06 Already updated
135 MGLY+OH = MCO3+CO 1.50E-11 IUPAC06 JMAO
136 GLYX+NO3 = HNO3 + HO2+ 2CO K1=1.40E-12exp(-1860/T); K=K1*([O2]+3.5D18)/(2*[O2]+3.5D18); Atkinson92&94, (ALD2)
137 MGLY+NO3 = HNO3 + CO +MCO3 1.40E-12 exp(-1860/T) Atkinson92&94, (ALD2)/IUPAC06
138 ISOP+OH = RIO2 2.70E-11 exp(390/T) IUPAC06
139 MVK+OH = VRO2 2.6e-12exp(610/T) IUPAC06 JMAO
140 MACR + OH = 0.57MAO3 + 0.43MRO2 8.0E-12exp(380/T) IUPAC06 JMAO,DBM(MCM3.1)
141 HAC+OH = MGLY+HO2 3E-12 Atkinson 92,94/IUPAC06
142 MCO3+A3O2 = MO2+RCHO+HO2 1.68E-12 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See Note 12
143 MCO3+PO2 = MO2 +ALD2+CH2O+HO2 1.68E-12 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See Note 12
144 MCO3+A3O2 = ACTA +RCHO 1.87E-13 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See Note 12
145 MCO3+PO2 = ACTA + 0.35RCHO+0.65HAC 1.87E-13 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See Note 12
146 ISOP+O3 = 0.387MACR + 0.159MVK + 0.100O3 + 0.270OH + 0.070PRPE + 0.900CH2O + 0.060HO2 + 0.150CO2 + 0.050CO 1.05E-14 exp(-2000/T) Paulson &Seinfeld, 92 Aschmann &Atkinson, 94
147 MVK+O3 = 0.82MGLY+ 0.80CH2O+0.20O2+0.05CO+0.06HO2+ 0.04ALD2 8.5 E-16exp(-1520/T) IUPAC06 0.20O2->0.20O3(Palmer, JMAO, according to Paulson & Seinfeld 92) Note 12
148 MACR+O3 = 0.800MGLY +0.700CH2O+0.200O3+0.200CO+0.275HO2+0.215OH+0.160CO2 1.4 E-15exp(-2100/T) IUPAC06 JMAO
149 ISOP+NO3 = INO2 3.15E-12 exp(-450/T) IUPAC06 JMAO
150 MVK+NO3 = MVN2 REMOVED (<6E-16,IUPAC06) IUPAC06 JMAO
151 MACR+NO3 = MAN2 2.3E-15 IUPAC06 JMAO
152 MACR+NO3 = MAO3+HNO3 1.1E-15 IUPAC06 JMAO:IUPAC06 total rate is 3.4E-15, so use the ratio from Lurmann et al.,1986
153 RCO3+MO2 = CH2O+HO2+ETO2 1.68E-12 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See note 12
154 GCO3+MO2 = 2CH2O +2HO2 1.68E-12 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See note 12
155 MAO3+MO2 = CH2O+HO2+CH2O+MCO3 1.68E-12 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See note 12
156 GLCO3+MO2 = CH2O +2HO2+CO 1.68E-12 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See note 12
157 RCO3+MO2 = RCOOH +CH2O 1.87E-13 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See note 12
158 GCO3+MO2 = RCOOH + CH2O 1.87E-13 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See note 12
159 MAO3+MO2 = RCOOH + CH2O 1.87E-13 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See note 12
160 GLCO3+MO2 = RCOOH + CH2O 1.87E-13 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See note 12
161 INPN+OH = INO2 3.80E-12 exp(200/T) DeMore,reported in Horowitz as MP+OH
162 PRPN+OH = PRN1 3.80E-12 exp(200/T) JPL97,MP+OH
163 ETP+OH = 0.50OH+ 0.50ETO2+0.50ALD2 3.80E-12 exp(200/T) JPL97,MP+OH
164 RA3P+OH = 0.50OH + 0.50A3O2+0.50RCHO 3.80E-12 exp(200/T) JPL97,MP+OH
165 RB3P + OH = 0.5OH + 0.5B3O2 + 0.5ACET 3.80E-12 exp(200/T) JPL97,MP+OH;DBM,lumping from MCM3.1
166 R4P+OH = 0.50OH+0.50R4O2 + 0.50RCHO 3.80E-12 exp(200/T) JPL97,MP+OH
167 RP+OH = 0.50OH+0.50RCO3+0.50ALD2 3.80E-12 exp(200/T) JPL97,MP+OH
168 PP + OH = PO2 3.80E-12 exp(200/T) JPL97,MP+OH;DBM(MCM 3.1)
169 GP + OH = GCO3 3.80E-12 exp(200/T) DBM(MCM 3.1)
170 GLP+OH = 0.50OH+0.50GLCO3+0.50CO 3.80E-12 exp(200/T) JPL97,MP+OH
171 RIP + OH = 0.509IALD + 0.509OH + 0.491RIO2 3.80E-12 exp(200/T) JPL97,MP+OH;DBM,lumping from MCM3.1
172 IAP + OH = IAO2 3.80E-12 exp(200/T) JPL97,MP+OH; DBM (MCM3.1)
173 ISNP+OH = 0.50OH+0.50RCHO+0.50NO2+0.50ISN1 3.80E-12 exp(200/T) JPL97,MP+OH
174 VRP+OH = 0.50OH+0.50RCHO+0.50VRO2 3.80E-12 exp(200/T) JPL97,MP+OH
175 MRP + OH = MRO2 3.80E-12 exp(200/T) JPL97,MP+OH;DBM(MCM 3.1)
176 MAOP + OH = MAO3 3.80E-12 exp(200/T) JPL97,MP+OH;DBM(MCM 3.1)
177 OH+MAP = 0.50OH+0.50CH2O + 0.50MCO3 3.80E-12 exp(200/T) JPL97,MP+OH
178 C2H6+NO3 = ETO2+HNO3 1.40E-18 Atkinson et al. 2004 (See note 13 below)
179 MNO3+OH =CH2O+NOMNO32 8.0E-13exp(-1000/T) JPL06 JMAO, The product is NO2 in the input file instead of NOMNO32.
180 IALD+OH = 0.44IAO2 +0.41MAO3+0.15HO2 3.70E-11 Paulson &Seinfeld, 92
181 IALD+O3 = 0.60MGLY + 0.10OH + 0.12CH2O + 0.28GLYC + 0.30O3 + 0.40CO + 0.20H2 + 0.20HAC + 0.20HCOOH 6.16E-15 exp(-1814/T) Paulson &Seinfeld, 92 MCO3+NO,MCO3,HO2,RCO3,GCO3,MAO3,GLCO3 rates are used for other radicals.
182 MCO3+MCO3 = 2MO2 2.50E-12 exp(500/T) Tyndall; See note 6. RCO3+HO2 same as MCO3+HO2, RCO3+NO same as MCO3+NO, RCO3+MCO3 same asMCO3+MCO3
183 MCO3+MO2 = CH2O+MO2+HO2 1.80E-12 exp(500/T) Tyndall
184 MCO3+MO2 = ACTA +CH2O 2.00E-13 exp(500/T) Tyndall
185 R4O2+MCO3 = MO2 +0.32ACET + 0.19MEK + 0.18MO2 + 0.27HO2 + 0.32ALD2 + 0.13RCHO + 0.05A3O2 + 0.18B3O2 + 0.32ETO2 1.68E-12 exp(500/T) T dep & B.R.Tyndall K298Villenave 98 See note 12
186 ATO2+MCO3 = MO2 +0.8HO2+0.2CH2O+0.2MCO3+0.8MGLY 1.68E-12 exp(500/T) Ibid.
187 KO2+MCO3 = MO2 +ALD2+MCO3 1.68E-12 exp(500/T) Ibid.
188 RIO2+MCO3 = MO2+0.864HO2+0.690CH2O +0.402MVK+0.288MACR+0.136RIO1+0.127IALD 1.68E-12 exp(500/T) Ibid.
189 RIO1+MCO3 = MO2 +IALD+HO2+0.75CH2O 1.68E-12 exp(500/T) Ibid.
190 IAO2+MCO3 = MO2 + HO2 + 0.65CO + 0.18H2 + 0.36HAC + 0.26GLYC + 0.58MGLY + 0.4CH2O 1.68E-12 exp(500/T) Ibid.
191 ISN1+MCO3 = MO2+NO2+GLYC+HAC 1.68E-12 exp(500/T) Ibid.
192 VRO2+MCO3 = MO2+0.28HO2+0.28CH2O+0.72MCO3+0.72GLYC+0.28MGLY 1.68E-12 exp(500/T) Ibid.
193 MRO2+MCO3 = MO2+HO2+0.17MGLY+0.83HAC+0.83CO+0.17CH2O 1.68E-12 exp(500/T) Ibid.
194 B3O2+MCO3 = MO2+HO2+ACET 1.68E-12 exp(500/T) Ibid.
195 R4N1+MCO3 = MO2+NO2+0.39CH2O+0.75ALD2+0.57RCHO+0.30R4O2 1.68E-12 exp(500/T) Ibid.
196 MVN2+MCO3 = MO2 +NO2+CH2O+0.5MCO3+0.5MGLY+0.5HO2 1.68E-12 exp(500/T) Ibid.
197 MAN2+MCO3 = MO2 +NO2+CH2O+MGLY 1.68E-12 exp(500/T) Ibid.
198 INO2+MCO3 = MO2 +0.10NO2 + 0.80HO2 +0.85HNO3 + 0.05NO2 +0.10MACR + 0.15CH2O +0.05MVK 1.68E-12 exp(500/T) Ibid.
199 PRN1+MCO3 = MO2 +NO2+CH2O+ALD2 1.68E-12 exp(500/T) Ibid.
200 R4O2+MCO3 = MEK +ACTA 1.87E-13 exp(500/T) Ibid.
201 ATO2+MCO3 = MEK +ACTA 1.87E-13 exp(500/T) Ibid.
202 KO2+MCO3 = MEK + ACTA 1.87E-13 exp(500/T) Ibid.
203 RIO2+MCO3 = MEK +ACTA 1.87E-13 exp(500/T) Ibid.
204 RIO1+MCO3 = MEK +ACTA 1.87E-13 exp(500/T) Ibid.
205 IAO2+MCO3 = MEK+ ACTA 1.87E-13 exp(500/T) Ibid.
206 VRO2+MCO3 = MEK +ACTA 1.87E-13 exp(500/T) Ibid.
207 MRO2+MCO3 = MEK +ACTA 1.87E-13 exp(500/T) Ibid.
208 R4N1+MCO3 = RCHO +ACTA + NO2 1.87E-13 exp(500/T) Ibid.
209 ISN1+MCO3 = RCHO +ACTA + NO2 1.87E-13 exp(500/T) Ibid.
210 MVN2+MCO3 = RCHO +ACTA + NO2 1.87E-13 exp(500/T) Ibid.
211 MAN2+MCO3 = RCHO +ACTA + NO2 1.87E-13 exp(500/T) Ibid.
212 INO2+MCO3 = RCHO +ACTA + NO2 1.87E-13 exp(500/T) Ibid.
213 PRN1 + MCO3 = RCHO +ACTA + NO2 1.87E-13 exp(500/T) Ibid.
214 B3O2+MCO3 = ACET +ACTA 1.87E-13 exp(500/T) Ibid.
215 MCO3+ETO2 = MO2+ALD2+HO2 1.68E-12 exp(500/T) Ibid.
216 MCO3+ETO2 = ACTA +ALD2 1.87E-13 exp(500/T) Ibid.
217 RCO3+MCO3 = MO2 + ETO2 2.50E-12 exp(500/T) Tyndall,MCO3+MCO3
218 GCO3+MCO3 = MO2 + HO2+ CH2O 2.50E-12 exp(500/T) Tyndall,MCO3+MCO3
219 MAO3+MCO3 = MO2 + CH2O + MCO3 2.50E-12 exp(500/T) Tyndall,MCO3+MCO3
220 GLCO3+MCO3 = MO2+ HO2+ CO 2.50E-12 exp(500/T) Tyndall,MCO3+MCO3
221 NO3+NO3 = 2NO2 + O2 8.50E-13 exp(-2450/T) JPL 06
222 HO2 = 0.50H2O2 gamma=2E-1 Jacob, 2000
223 NO2 = 0.50HNO3 +0.50HNO2 gamma=1E-4 Jacob, 2000
224 NO3 = HNO3 gamma=1E-3 Jacob, 2000
225 N2O5 = 2HNO3 gamma=fct(aerosol type, rh,temp) Evans et al., 2005
226 DMS+OH = SO2+MO2+CH2O 1.1E-11exp(-240/T) JPL06 JMAO
227 DMS+OH+O2 = 0.75SO2+0.25MSA+MO2 K1=1.0E-39exp(5820/T); K2=5.0E-30exp(6280/T); K=K1*[O2]/(1.0+K2*[O2]) JPL06 MJE
228 DMS+NO3 = SO2+HNO3 +MO2+CH2O 1.90E-13 exp(500/T) JPL2003
229 SO2+OH+M = SO4+HO2 LPL: 3.30E-31(300/T)^4.3; HPL:1.60E-12; Fc: 0.6 JPL06 JMAO
230 MAO3 + NO=MCO3 + CH2O + NO2 6.7E-12exp(340/T) IUPAC2006 Palmer, May, JMAO:This reaction doesn't exist in the manual but is in the input The rate is from IUPAC2006 (or 2003), using the rate of CH3CH2C(O)O2+NO=C2H5C(O)O+NO2.
231 RIO1+NO = NO2 + IALD + HO2 + 0.75 CH2O K* (1-YN) where YN is returned from fyrno3.f; K=2.7E-12 exp(350/T) (Xcarbn=5.00E00) Atkinson 97
232 RIO1+NO=HNO3 K* YN where YN is returned from fyrno3.f ;K=2.7E-12 exp(350/T) (Xcarbn=5.00E00) Atkinson 97
233 PMN + OH = NO2 + 0.590HAC + 2.0HO2 + 2.230CH2O 3.20E-11
234 PMN + O3 = NO2 + 0.60CH2O + HO2 8.2E-18
235 GLYC+OH =0.8GCO3+0.4CO+0.2H2+0.2HO2 1.0E-11
236 PRPE+NO3=PRN1 4.59E-13 exp(-1156/T)

Note 10.RO2 primary+MO2: following madronich & calvert: K(RO2+MO2) = 2*sqrt(k(MO2+MO2)*k(RO2+RO2)).

Note 11.RO2 secondary+MO2: same calculation as in note 10, but with the updated MO2+MO2 rate.

Note 12:k 298 = 1e-11cm3 molec-1. Use T dep. From MCO3+MO2 according to Tyndall, and apply branching ratio from Tyndall. Keeping rate constant at 298K equal to 1E-11,means that A factor is 1.87E-12. Branching ratio from Tyndall sends 90% to the radical branch(A = 0.9*1.87E-12 = 1.68E-12), and 10% to molecular branch (A = 0.1* 1.87E-12 =1.87E-13).

Note 13. Atkinson et al. (2004) gives k298 = <1x10^-17, which encompasses 1.4x10^-18.

--Jmao 21:52, 30 June 2011 (EDT)