GEOS-Chem model development priorities: Difference between revisions

From Geos-chem
Jump to navigation Jump to search
 
(348 intermediate revisions by 3 users not shown)
Line 1: Line 1:
On this page we list the current priorities for GEOS-Chem development. This list is continuously updated based on code readiness and input from the [https://geos-chem.seas.harvard.edu/geos-working-groups Working Groups] and the [https://geos-chem.seas.harvard.edu/geos-steering-cmte Steering Committee]. For history of past releases see the [[GEOS-Chem_versions|GEOS-Chem Versions wiki page]].
On this page we list the current priorities for GEOS-Chem development. This list is continuously updated based on code readiness and input from the [https://geos-chem.seas.harvard.edu/geos-working-groups Working Groups] and the [https://geos-chem.seas.harvard.edu/geos-steering-cmte Steering Committee]. For history of past releases see the [[GEOS-Chem_versions|'''GEOS-Chem Versions wiki page''']].


== Merged and awaiting release ==
== Merged and awaiting release ==
Line 12: Line 12:
|-valign="top"
|-valign="top"
|align="center"|'''[[GEOS-Chem no-diff-to-benchmark]]'''
|align="center"|'''[[GEOS-Chem no-diff-to-benchmark]]'''
|align="center"|'''[[GEOS-Chem 14.3.0]]'''
|align="center"|'''[[GEOS-Chem 14.6.0]]'''


|}
|}
Line 29: Line 29:


|-valign="top"
|-valign="top"
|TOMAS in GCHP
|New version of CEDS at 0.1 deg
|Betty Croft (Dalhousie)
|Dandan Zhang (WashU)
|TOMAS
|Emissions
|Simple
|Simple
|
|
*[https://github.com/geoschem/GCHP/pull/221 GCHP PR #221]
*[https://github.com/geoschem/geos-chem/pull/2171 geos-chem PR #2171]
*[https://github.com/geoschem/geos-chem/pull/1261 geos-chem PR #1261]
*[https://github.com/geoschem/geos-chem/pull/2696 geos-chem PR #2696]
*[https://github.com/geoschem/HEMCO/pull/145 geoschem/HEMCO PR #145]


|-valign="top"
|-valign="top"
|[https://github.com/geoschem/geos-chem/issues/1511 Bug fix for TOMAS sulfate production rates]
|Use USTAR read from GEOS instead of calculating from U10M and V10M
|Betty Croft (Dalhousie)
|Yuanjian Zhang (WashU)
|TOMAS
|Emissions
|Simple
|Simple
|
|
*[https://github.com/geoschem/geos-chem/pull/1569 geos-chem PR #1569]
*Slated for [[GEOS-Chem 14.6.0|14.6.0]]
*[https://github.com/geoschem/HEMCO/pull/279 HEMCO PR #279]
*NOTE: WashU will recompute mass tuning factors for each met field & resolution (GCClassic)


|-valign="top"
|-valign="top"
|Update surface methane boundary condition using NOAA flask data
|Rice methane emissions
|Lee Murray (Rochester)
|Zichong Cheng (Harvard)
|Input data
|Carbon simulation<br>+ Emissions
|Simple
|Simple
|
|
*[https://github.com/geoschem/geos-chem/issues/1626 geos-chem issue #1626]
*Slated for [[GEOS-Chem 14.5.2|14.5.2]]
*[https://github.com/geoschem/geos-chem/pull/2673 geos-chem PR #2673]
*[https://eartharxiv.org/repository/view/7890/ Z. Chen et al. (submitted)]


|-valign="top"
|-valign="top"
|Include nitrate (NIT + NITs) in Ox family
|Retire CH4, CO2, tagCO simulations in favor of the carbon simulation
|Melissa Sulprizio (Harvard)
|Melissa Sulprizio (Harvard)
|Chemistry<br>Diagnostics
|Carbon gases
|Simple
|Simple
|
|
*[https://github.com/geoschem/geos-chem/pull/2685 geos-chem PR #2685]
*Need approval from Carbon Cycle WG before merging


|-valign="top"
|-valign="top"
|GCHP carbon simulation
|Make GC-Classic bit-for-bit reproducible upon restart<br>(part 1 of 2)
|Bob Yantosca (Harvard)
|Carbon
|Medium
|
*[https://github.com/geoschem/GCHP/issues/339 geos-chem Issue #339]
 
|-valign="top"
|GEOS-IT meteorology
|Lizzie Lundgren (Harvard)
|Lizzie Lundgren (Harvard)
|New meteorology option
|GC-Classic
|Medium
|Medium
|
|
*[https://github.com/geoschem/geos-chem/pull/1848 geos-chem PR #1848]
*Slated for [[GEOS-Chem 14.6.0|14.6.0]]
*[https://github.com/geoschem/geos-chem/pull/2521 geos-chem PR #2521]


|-valign="top"
|-valign="top"
|Cloud-J for computing photolysis rates
|Capture all trop and PBL height changes in budget diagnostics
|Lizzie Lundgren (Harvard)
|Chris Holmes (FSU)<br>Lizzie Lundgren (Harvard)
|Photolysis
|Diagnostics
|Medium
|Medium
|
|
*[https://github.com/geoschem/geos-chem/pull/1522 geos-chem PR #1848]
*Slated for [[GEOS-Chem 14.6.0|14.6.0]]
*[https://github.com/geoschem/GCClassic/pull/27 gcclassic PR #27]
*[https://github.com/geoschem/geos-chem/pull/2103 geos-chem PR 2103]


|-valign="top"
|-valign="top"
|Mass flux regridding fix in MAPL
|Add run directory creation support for processed cubed-sphere GEOS-IT meteorology
|Lizzie Lundgren (Harvard)<br>Seb Eastham (MIT)
|Yuanjian Zhang (WashU)
|GCHP input regridding
|GCHP
|Medium
|Simple
|
|
*[https://github.com/GEOS-ESM/MAPL/pull/2056 GEOS-ESM/MAPL PR #2056]
*Slated for [[GEOS-Chem 14.6.0|14.6.0]]
*[https://github.com/geoschem/geos-chem/pull/2616 geos-chem PR 2616]


|-valign="top"
|-valign="top"
|Improve pressure level computation for GCHP advection
|Fixed PDOWN definition and re-evaporation requirement for washout
|Lizzie Lundgren (Harvard)<br>Seb Eastham (MIT)
|Yuanjian Zhang (WashU)
|GCHP advection
|Convection
|Medium
|Simple
|
 
|-valign="top"
|GCHP advection diagnostics
|Lizzie Lundgren (Harvard)
|GCHP diagnostics
|Medium
|
|
*Slated for [[GEOS-Chem 14.6.0|14.6.0]]
*[https://github.com/geoschem/geos-chem/pull/2573 geos-chem PR 2573]


|}
|}
Line 124: Line 118:


|-valign="top"
|-valign="top"
|New version of CEDS at 0.1 deg
|Correct the issue that injection height has been artificially decreased by HEMCO
|Dandan Zhang (WashU)
|Lixu Jun (Montana)
|Emissions
|Emissions
|Simple
|Simple
|Delivered<br>Apr 2023
|Delivered<br>June 2024
|
|
*[https://github.com/geoschem/geos-chem/issues/1745 geos-chem issue #1745]
*[https://github.com/geoschem/geos-chem/issues/2330 geos-chem issue #2330]
*[https://github.com/geoschem/geos-chem/pull/2358 geos-chem PR #2358]


|-valign="top
|-valign="top"
|Update volcano emissions through 2022
|Capability to run GCClassic at 0.125x0.15625 resolution
|Melissa Sulprizio (Harvard)
|Melissa Sulprizio (Harvard)<br>Xiaolin Wang (Harvard)
|Emissions
|Nested grid
|Simple
|Simple
|Delivered<br>Sep 2023
|Delivered
|
|
*https://gmao.gsfc.nasa.gov/gmaoftp/geoscf/volcano_so2/v202302/
*[https://github.com/geoschem/geos-chem/pull/1980 geos-chem PR #1980]
*[https://github.com/geoschem/HEMCO/pull/290 HEMCO PR #290]


|-valign="top"
|-valign="top"
|KORUS-AQ emissions for East Asia (as an option)
|Strat-adjusted RF in GCC and GCHP
|Katie Travis (NASA)
|Connor Barker (UCL)<br>Eloise Marais (UCL)
|Emissions
|Radiation
|Simple
|Simple
|Delivered<br>Apr 2023
|Delivered
|
|
*[https://github.com/geoschem/geos-chem/pull/2525 geos-chem PR #2525]


|-valign="top"
|-valign="top"
|[https://doi.org/10.7910/DVN/23BRII Global continental chlorine (pCl and HCl) emissions]
|Archived TCR-2 OH fields for carbon simulations
|Bingqing Zhang (Georgia Tech)<br>Pengfei Liu (Georgia Tech)
|Kazu Miyazaki (JPL)<br>Melissa Sulprizio (Harvard)
|Emissions
|Input data
|Simple
|Simple
|Delivered<br>Jul 2022
|Data delivered<br>Oct 2024
|
|
*This will be the default OH, but users will have the option of selecting other OH fields
*[https://github.com/geoschem/geos-chem/issues/2537 geos-chem issue #2537]


|-valign="top"
|-valign="top"
|ALK4 & R4N2 chemistry
|Dust non-sphericity impacts on optical properties
|Jared Brewer (UMN)
|Inderjeet Singh (WashU)
|Chemistry
|TBD
|Not delivered
|
*[https://github.com/geoschem/geos-chem/issues/1625 geos-chem issue #1625]
*[https://acmg.seas.harvard.edu/files/acmg/files/brewer2022.pdf Brewer, J.F. et al., J. Geophys. Res., submitted 2023.]
 
|-valign="top"
|[https://github.com/geoschem/geos-chem/issues/1747 Parameterization of SNA and OM dry size]
|Haihui Zhu (WashU)
|Aerosols
|Aerosols
|Simple
|Medium
|Delivered<br>Aug 2023
|Not yet delivered
|
*[https://egusphere.copernicus.org/preprints/2022/egusphere-2022-1292/ Zhu et al., EGUsphere, submitted 2023.]
*[https://github.com/geoschem/geos-chem/pull/1902 geos-chem PR #1902]
 
|-valign="top"
|[https://github.com/geoschem/geos-chem/issues/1288 New soil NOx parameterization]
|Yi Wang (U. Iowa)<br>Jun Wang (U. Iowa)
|Emissions
|TBD
|Not delivered
|
*See [https://github.com/geoschem/geos-chem/issues/1288 geoschem/geos-chem #1288]
 
 
|-valign="top"
|[https://github.com/geoschem/geos-chem/issues/1928 Updated 0.1x0.1 timezone file accounting for daylight savings]
|Karn Vohra (UCL)
|Emissions
|Simple
|Not delivered
|
|


Line 207: Line 176:
!width="100px"|Model scope
!width="100px"|Model scope
!width="100px"|Delivery status
!width="100px"|Delivery status
!width="300px"|Notes and References
!width="300px"|Notes and Refereneces
 
 
|-valign="top"
|Binary Activity Thermodynamic (BAT) model for non-ideal mixing of water and organics in organic aerosol
|Camilo Serrano (McGill)<br>Andreas Zuend (McGill)
|Aerosols
|Not delivered
|
*[https://github.com/geoschem/geos-chem/issues/2392 geos-chem issue #2392]


|-valign="top"
|-valign="top"
|Geologic emission of ethane and propane
|Update UCX to include gravitational settling of aerosol species beyond just BCPI
|Matthew Rowlinson and Mat Evans(York)
|Conor Barker (UCL)<br>Eloise Marais (UCL)
|Emissions
|Aerosols
|Delivered<br>Jan 2023
|Not delivered
|
|
*Global source from https://doi.org/10.1038/s41561-018-0073-0 with spatial distribution from https://doi.org/10.5194/essd-11-1-2019


|-valign="top"
|-valign="top"
|[https://github.com/geoschem/geos-chem/pull/629 Ecophysiology module in GEOS-Chem for biosphere-atmosphere exchange]
|Seasalt aerosol from sea ice leads (2002-2011)
|Joey Lam(CUHK)<br>Amos Tai (CUHK)
|Hannah Horrowitz (UIUC)
|Science
|Aerosols
|Delivered<br>Feb 2021
|Not delivered
|
|
*[https://github.com/geoschem/geos-chem/pull/629 geos-chem PR #629]
*Offline and online, ready to go in HEMCO (optional in addition to existing seasalt emissions)


|-valign="top"
|-valign="top"
|LPJ land cover (global), fire (W US), dust emissions (SW N America), 1700-2100
|Global organic N dep from various emissions; nitrate aromatics updates
|Yang Li (Baylor University)<br>Loretta Mickley (Harvard)
|May Fu (SUSTech)
|Emissions
|Chemistry +<br>Deposition
|Delivered<br>Jul 2021
|Not delivered
|
|
*Data involves many files- need to think about temporal frequency


|-valign="top"
|-valign="top"
|[https://github.com/geoschem/geos-chem/issues/550 MEIC (China regional) for 2000-2017 at 0.5x0.625 deg]
|Dry deposition to F90 to improve readability
|Shixian Zhai (Harvard)
|Chris Holmes (FSU)
|Emissions
|Dry Deposition
|Delivered
|Not delivered
|
|
*Need permission from Qiang Zhang (Tsinghua U.) to distribute data
*[https://github.com/geoschem/geos-chem/issues/2389 geos-chem issue #2389]


|-valign="top"
|-valign="top"
|[https://github.com/geoschem/geos-chem/issues/1867 Online H2 chemistry]
|Ecophysiology module in GEOS-Chem for biosphere-atmosphere exchange
|Maria Paula Pérez-Peña (UNSW)<br>Jenny Fisher (UOW)<br>Dylan Millet (UMN)
|Joey Lam  (CUHK)<br>Amos Tai (CUHK)
|Chemistry
|Dry deposition
|Delivered<br>June 2023
|Delivered<br>Feb 2021
|
|
*[https://acp.copernicus.org/articles/22/12367/2022/acp-22-12367-2022.html Pérez-Peña, M.P. et al., ACP, 2022.]
*[https://github.com/geoschem/geos-chem/pull/629 geos-chem PR #629]
*Implemented in v12.5, needs to be brought up to current version


|-valign="top"
|-valign="top"
|[https://github.com/geoschem/geos-chem/pull/1983 Updated gravitational settling, dry mass-weighted mean diameters and hygroscopic growth in aerosol dry deposition]
|Updated bottom-up global CH4 oil, gas, and coal emissions (GFEI v3)
|Yanshun Li (WashU)
|Tia Scarpelli (Carbon Mapper)<br>Melissa Sulprizio (Harvard)
|Aerosols
|Emissions
|Delivered<br>Oct 2023
|
|
|
*[https://acp.copernicus.org/articles/23/12525/2023/acp-23-12525-2023.html Li et al., ACP, 2023.]
*[https://github.com/geoschem/geos-chem/pull/1983 geos-chem PR #1983]


|-valign="top"
|-valign="top"
|DMS Chemistry
|FRP-based fire emissions for eastern US at 0.2 (2019-2020)
|Linia Tashmim (UC Riverside)<br>William Porter (UC Riverside)
|Chris Holmes (FSU)
|Chemistry
|Emissions
|Not delivered
|Not delivered
|
|
*[https://github.com/geoschem/geos-chem/issues/2388 geos-chem issue #2388]


|-valign="top"
|-valign="top"
|Organic acids (RCOOH)
|China agriculture NH3 emissions
|Katie Travis (NASA)
|Amos Tai (CUHK)
|Chemistry
|Emissions
|Not delivered
|Not delivered
|
|


|-valign="top"
|-valign="top"
|Improve carbon & nitrogen conservation in reactions
|T-dependent anthropogenic VOCs
|Kelvin Bates (Harvard)
|May Fu (SUSTech)
|Chemistry
|Emissions
|Not delivered
|Not delivered
|
|
*Option. Requires processing existing anthropogenic VOC emissions to generate offline emissions to read in. Parameterised for China.
|-valign="top"
|New source functions for transport tracers beryllium-7 and beryllium-10
|Minjie Zheng (ETH)
|Emissions
|Delivered<br>June 2024
|
*Available at https://zenodo.org/records/8372652


|-valign="top"
|-valign="top"
|Blowing snow sea salt in TOMAS
|LPJ land cover (global), fire (W US), dust emissions (SW N America), 1700-2100
|Betty Croft (Dalhousie)
|Yang Li (Baylor U)<br>Loretta Mickley (Harvard)
|Aerosols
|Emissions
|Delivered
|
*Data involves many files- need to think about temporal frequency
 
|-valign="top"
|Hg geogenic emissions (volcanic, rock weathering)
|Eric Roy (MIT)
|Emissions
|Not delivered
|Not delivered
|
|
*[https://github.com/geoschem/geos-chem/issues/2361 geos-chem #2361]
*[https://gmd.copernicus.org/preprints/gmd-2024-65/ Dastoor et al. (2024)]


|-valign="top"
|-valign="top"
|[https://pubs.rsc.org/en/content/articlelanding/2022/EM/D2EM00019A Australian anthropogenic Hg emissions]
|Hg biomass burning - FINN2.5 & GFED4
|Stephen MacFarlane (UOW)<br>Jenny Fisher (UOW)<br> Hannah Horowitz (U. Illinois)<br>Viral Shah (Harvard)
|Eric Roy (MIT)
|Hg simulation
|Emissions
|Not delivered
|Not delivered
|
|
*[https://github.com/geoschem/geos-chem/issues/2361 geos-chem #2361]
*[https://gmd.copernicus.org/preprints/gmd-2024-65/ Dastoor et al. (2024)]


|-valign="top"
|-valign="top"
|WRF-GC Hg simulation
|BCC-GC online
|Xiaotian Xu (Nanjing U.)<br>Yanxu Zhang (Nanjing U.)
|Lin Zhang (PKU)
|Hg simulation<br>WRF-GC
|External Model
|Not delivered
|Not delivered
|
|


|-valign="top"
|-valign="top"
|Updated HgII gas-partical partitioning
|GC-YIBS with online fire emissions
|Kaiyun Liu (Tsinghua U.)<br>Qingru Wu (Tsinghua U.)<br>Shuxiao Wang (Tsinghua U.)
|Xu Yue (NUIST)<br>Hong Liao (NUIST)
|Hg simulation
|External Model
|Not delivered
|Not delivered
|
|
*Should be option, not default


|-valign="top"
|-valign="top"
|Dry deposition to F90 (readability)
|GISS-GC offline (GCAP)
|Chris Holmes (FSU)
|Lee Murray (Rochester)
|Dry deposition
|GCAP
|Not delivered
|Not delivered
|
|
Line 330: Line 324:


|-valign="top"
|-valign="top"
|Replace ISORROPIA with [https://gmd.copernicus.org/preprints/gmd-2023-159/gmd-2023-159.pdf HTEPv1.0]
|Fixes to stratospheric aerosol settling
|Seb Eastham (MIT)<br>Lizzie Lundgren (Harvard)
|Connor Barker (UCL)<br>Eloise Marais (UCL)
|Aerosol thermodynamics
|Aerosols
|
|
*Will be git submodule


|-valign="top"
|-valign="top"
|PPN+hv, PPN+OH
|DMS chemistry in v14
|Robert Ryan (UCL)
|Linia Tashmim (UCR)<br>Will Porter (UCR)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|MBO
|NO2+OH+H2O kinetics
|Michael Vermeuel (UMN)
|Mat Evans (York)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|[https://github.com/geoschem/geos-chem/issues/1094 Stratospheric adjustment with RRTMG in GEOS-Chem]
|Use LSODE or Backward Euler integrator in KPP for faster kinetics
|Seb Eastham (MIT)
|Bob Yantosca (Harvard)
|Science
|Chemistry
|
|
*LSODE appears to be non-thread-safe for OpenMP parallelization due to legacy code, and thus fails when used in GEOS-Chem Classic.  Bob Y. is investigating if this can be fixed, or if we should proceed to using Backwards Euler.


|-valign="top"
|-valign="top"
|Initial conditions for CH4 correcting background and stratospheric biases
|Load balancing in chemistry solver (GCHP)
|Todd Mooring (Harvard)
|Zhouran Sun (WashU)
|Methane simulation
|Chemistry +<br>Performance
|
|


|-valign="top"
|-valign="top"
|Migrating simple SOA formation from carbon_mod.F90 into the KPP "full-chemistry" mechanism
|Active chemistry in mesosphere for both GCHP and GCClassic
|Bob Yantosca (Harvard)
|Helena McDonald (MIT)<br>Sebastian Eastham (ICL)
|Aerosols<br>Structural
|Chemistry
|
 
|-valign="top"
|Updated aromatic oxidation
|Stephen MacFarlane (Wollongong)<br>Jenny Fisher (Wollongong)
|Chemistry
|
 
|-valign="top"
|MCO3 uptake by cloud forming MP; leading to lower PAN
|Laura Yang (Harvard)
|Chemistry
|
 
|-valign="top"
|Implement isotope simulation for CH4 in the carbon simulation
|Lee Murray (Rochester)
|Chemistry
|
*Will have to change negative emissions from soil to a first-order loss process
 
|-valign="top"
|Documentation for adding additional aerosol species
|Connor Barker (UCL)
|Documentation
|
 
|-valign="top"
|Column diagnostics
|Lizzie Lundgren (Harvard)<br>Viral Shah (GMAO)
|Diagnostics
|
|
*Ongoing


|-valign="top"
|-valign="top"
|Re-binning of off-line sea salt and dust for use in TOMAS
|TOMAS rate diagnostics -- improve performance
|Betty Croft (Dalhousie)
|Betty Croft (WashU/Dal)
|Aerosols
|Diagnostics +<br>Performance
|
|


|-valign="top"
|-valign="top"
|Adaption of TOMAS' in-cloud aqueous sulfate production for KPP versus sulfate_mod.F90
|Archive gamma values from heterogeneous chemistry
|Betty Croft (Dalhousie)
|Bob Yantosca (Harvard)
|Aerosols
|Diagnostics
|
|


|-valign="top"
|-valign="top"
|ML algorithms for bulk aerosols
|RRTMG Documentation
|Arshad Nair (SUNY Albany)<br>Fangqun Yu (SUNY Albany)
|GCST
|Aerosols
|Documentation
|
|


|-valign="top"
|-valign="top"
|PM2.5 and PM10 calculations: aerodynamic vs geometric diameters
|Canopy Physics Model
|Shixian Zhai (Harvard)
|Sam Silva (MIT)
|Aerosols
|Dry Deposition
|
|
*Available at https://zenodo.org/records/3614062#.XzvrH5NKjOR (GEOS-Chem 12.3.0)


|-valign="top"
|-valign="top"
|Updates to Hodzic SOA scheme
|Dry deposition diagnostics by land cover
|Jared Brewer (Harvard)
|Holly Nowell (FSU)<br>Chris Holmes (FSU)
|Aerosols
|Dry Deposition
|
|


|-valign="top"
|-valign="top"
|Automated reduction in isoprene scheme
|Dry deposition process diagnostics
|Dan Westervelt (Lamont-Doherty)
|Holly Nowell (FSU)<br>Chris Holmes (FSU)
|Aerosols
|Dry Deposition
|
|


|-valign="top"
|-valign="top"
|Brown carbon chemsitry
|Biomass burning for TOMAS
|Jingqiu Mao (U. Alaska)<br>Xuan Wang (CUHK)
|Nicole June (CSU)
|Aerosols
|Emissions +<br>Microphysics
|
|


|-valign="top"
|-valign="top"
|GEOS resolution and subgrid convection - Part 2 RAS parameter tuning
|Historic biomass burning (1750-2010)
|Tailong He (Toronto)<br>Dylan Jones (Toronto)<br>Andrea Molod (NASA GMAO)
|Pengfei Liu (Georgia Tech)
|Convection
|Emissions
|
|


|-valign="top"
|-valign="top"
|High-res top-down TROPOMI-derived seasonal mean NOx emissions for China
|New prior CO2 biospheric fluxes from CMS-FLUX and GMAO
|Jintai Lin (PKU)
|Kevin Bowman (JPL)<br>Lesley Ott (GMAO)
|Emissions
|Emissions
|
|
*Horizontal resolution: 5km, temporal resolution: JJA mean
*GMAO can provide high-resolution fluxes (as high as 12 km)
*monthly data will be available at a later stage; please contact us


|-valign="top"
|-valign="top"
|Updated biomass burning emission factors and species
|Snowpack Br2 emission
|Tess Carter (MIT)
|Chris Holmes (FSU)
|Emissions
|Emissions
|
|


|-valign="top"
|-valign="top"
|Updated offline sea salt emissions
|EDGAR v8.1_toxHg emissions for 1970-2022
|Hongjian Weng (PKU) <br> Jintai Lin (PKU)
|Eric Roy (MIT)
|Emissions
|Emissions
|
|


|-valign="top"
|-valign="top"
|[https://gmd.copernicus.org/articles/13/2569/2020/ Canopy Physics Model]
|Improve pressure handling in GCHP advection
|Sam Silva (MIT)
|Yuanjian Zhang (WashU)<br>Seb Eastham (ICL)
|Emissions &<br>Science
|GCHP
|
|
*DOI: [https://zenodo.org/record/3614062#.XzvrH5NKjOR 10.5281/zenodo.3614062]
*Needs to be updated to a more recent GEOS-Chem version


|-valign="top"
|-valign="top"
|Assessment/improvement of OpenMP performance in GC-Classic and HEMCO standalone
|Add error trap for duplicate scale factors in HEMCO
|Bob Yantosca (Harvard)
|Bob Yantosca (Harvard)
|Model performance
|HEMCO
|
|
*Ongoing (will be done as time allows)


|-valign="top"
|-valign="top"
|Retire all BPCH diagnostics
|Integration testing: Add stretched grid
|Bob Yantosca (Harvard)
|Lizzie Lundgren (Harvard)
|Diagnostics
|Quality Assurance
|
 
|-valign="top"
|Integration testing: Add GCHP mass flux run
|Lizzie Lundgren (Harvard)
|Quality Assurance
|
|
*Can be done following the [https://github.com/geoschem/geos-chem/pull/1569 TOMAS update for GCHP]


|-valign="top"
|-valign="top"
|Assess memory leak in GCHP
|Integration testing: Reinstate TOMAS40
|Killian Murphy (York)
|Betty Croft (Dalhousie/WashU)
|Model performance
|Quality Assurance
|
|
*NOTE: Most memory leaks in GCHP have been fixed by [https://github.com/geoschem/geos-chem/pull/1353 geoschem/geos-chem PR #1353].  Need to assess if any memory leaks still remain.


|-valign="top"
|-valign="top"
|Hybrid MPI-OpenMP in GCHP
|Continue cleanup of C-preprocessor switches
|Seb Eastham (MIT)<br>Killian Murphy (York)
|Lizzie Lundgren (Harvard)
|Model performance
|Structural
|
|


|-valign="top"
|-valign="top"
|Improve run directory templating and creation with init_rd.sh and shared directories
|Updates to Luo deposition scheme
|Jourdan He (WashU)
|Gan Luo (Albany)
|Run directories
|Wet Deposition
|
|
*New version, keep as switch (not default)


|-valign="top"
|-valign="top"
|Table of CTM and online GCM properties: GCHP, GCC, GEOS-CTM, GC-Nested, online GEOS, GEOS-replay, etc
|Testing the use of a new scavenging parameterization developed by Luo and Yu for cold cloud with Pb-210 aerosol tracer
|GCST?
|Gan Luo (Albany)<br>Fangqun Yu (Albany)
|Documentation
|Wet Deposition
|
|


Line 496: Line 522:


|-valign="top"
|-valign="top"
|Snow / Icy Bromine
|ML algorithms for bulk aerosol
|Becky Alexander (UW)<br>William Swanson (U. Alaska)<br>Shuting Zhai (UW)
|Arshad Nair (Albany)<br>Fangqun Yu (Albany)
|Aerosols
|
 
|-valign="top"
|Heterogeneous sulfate chemistry
|Katie Travis (NASA)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|Monoterpene oxidation scheme
|H2 as an active species
|Jessica Haskins (MIT)
|Seb Eastham (ICL)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|Fire related VOCs including furans
|HCN, acetonitrile as fire tracers
|Lu Hu (UMT)<br>Lixu Jin (UMT)
|Kevin Bates (CU Boulder)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|Extension of UCX into the mesosphere
|Implement ethane in carbon simulation
|Seb Eastham (MIT)<br>Eric Fleming (NASA)
|Yuzhong Zhang (Westlake)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|Methane flux ingestion
|Mesospheric source of CO
|Eloise Marais (UCL)
|Dylan Jones (UofT)<br>Pam Wales (NASA GSFC)
|Chemistry
|Emissions
|
 
|-valign="top"
|Drought-stress algorithm
|Wei Li (Houston)
|Emissions
|
 
|-valign="top"
|Physically-based resolution correction for BVOC emissions using MEGAN
|May Fu (SUSTech)
|Emissions
|
 
|-valign="top"
|Canadian forest fire prediction system (Canada government forecast model)
|Robin Stevens (Montreal)
|Emissions
|
 
|-valign="top"
|Cooking emissions (not biofuel)
|Kelvin Bates (CU Boulder)
|Emissions
|
 
|-valign="top"
|State-specific annual emissions scaling factors (US) (1990-2021)
|Ishir Dutta (MIT)
|Emissions
|
 
|-valign="top"
|GISS-GC online
|Lee Murray (Rochester)
|External model
|
 
|-valign="top"
|Hybrid MPI-OpenMP in GCHP
|Seb Eastham (MIT)<br>Killian Murphy (York)<br>Lizzie Lundgren (Harvard)
|GCHP
|
 
|-valign="top"
|MAPL3: Update to MAPL3 in GCHP, including replacement of ExtData.rc and HISTORY.rc with YAML files
|Lizzie Lundgren (Harvard)
|GCHP
|
 
|-valign="top"
|MAPL3: Comply with MAPL "positive" standard in GCHP diagnostic files
|Lizzie Lundgren (Harvard)
|GCHP
|
|


|-valign="top"
|-valign="top"
|Dust non-sphericity impacts on surface chem and optical properties
|MAPL3: Wildcards in GCHP History
|Inderjeet Singh (WashU)
|Lizzie Lundgren (Harvard)
|Aerosols
|GCHP
|
|


|-valign="top"
|-valign="top"
|Size-resolved stratospheric aerosol
|MAPL3: Output emissions with positive up convention in GCHP
|Seb Eastham (MIT)
|Lizzie Lundgren (Harvard)
|Aerosols
|GCHP
|
|


|-valign="top"
|-valign="top"
|Extend aerosol settling
|Assessment/improvement of OpenMP performance in GC-Classic and HEMCO standalone
|Eloise Marais (UCL)
|Bob Yantosca (Harvard)
|Aerosols
|Performance
|
|


|-valign="top"
|-valign="top"
|Stratospheric aerosol APM
|Photophysical oxidation of aldehydes
|Fangqun Yu (SUNY)
|Paulo Sebastianelli (Wollongong)<br>Jenny Fisher (Wollongong)
|Aerosols
|Chemistry
|
|


|-valign="top"
|-valign="top"
|Plume-in-grid model
|DMS updates
|Hongwei Sun (Harvard)
|Will Porter (UCR)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|Updated lightning NOx: Prescribe from ground and geostationary lightning flashes
|Furans emission and chemistry
|Lee Murray (Rochester)
|Lixu Jin (Montana)<br>Lu Hu (Montana)
|Emissions
|Chemistry + <br>Emissions
|
|


|-valign="top"
|-valign="top"
|Seb aircraft emissions beyond recent 2019 update
|Cl2 prodcution from Fe aerosol
|Seb Eastham (MIT)
|Qianjie Chen (HK Poly)<br>Becky Alexander (UW)
|Emissions
|Chemistry
|
|


|-valign="top"
|-valign="top"
|FRP-based fire emsisions for eastern US at 0.2 deg
|VCP emissions
|Charlie Fite (FSU)
|Kevin Bates (CU Boulder)
|Emissions
|Emissions
|
|


|-valign="top"
|-valign="top"
|Hg iodine chemistry
|Bidirectional land-atmosphere exchange for Hg
|Yiming Fu<br>Yanxu Zhang (Nanjing U.)
|Yuying Cui (MIT/Tsinghua)
|Hg simulation
|Hg simulation
|
|


|-valign="top"
|-valign="top"
|Hg simulation in GCHP
|OH covariances for inversions
|Ari Feinberg (MIT)<br>Lyssa Freese (MIT)
|Elise Penn (Harvard)
|Hg simulation
|Inversions
|
 
|-valign="top"
|CESM2-GC offline
|Seb Eastham (ICL)<br>Lee Murray (Rochester)
|Met fields
|
 
|-valign="top"
|Re-binning of off-line sea salt and dust for TOMAS
|Betty Croft (Dalhousie)
|Microphysics
|
 
|-valign="top"
|TOMAS nucleation updates
|Sam O'Donnell (CSU)
|Microphysics
|
 
|-valign="top"
|Stratospheric aerosol APM
|Fangqun Yu (SUNY Albany)
|Microphysics
|
|


|-valign="top"
|-valign="top"
|Update Hg ocean and soil boundary conditions for consistency with new chemistry
|Transition from MERRA-2 to GEOS-IT for benchmarking
|Yanxu Zhang (Nanjing U.)
|Yuanjian Zhang (WashU)
|Hg simulation
|Quality Assurance
|
|


|-valign="top"
|-valign="top"
|Dry deposition diagnostics by land cover
|Automate integration testing on AWS
|Holly Nowell (FSU)
|Yidan Tang (WashU)
|Diagnostics
|Quality Assurance
|
|


|-valign="top"
|-valign="top"
|Dry deposition process diagnostics
|Integration testing: Add across end of year run
|Holly Nowell (FSU)
|GCST
|Diagnostics
|Quality Assurance
|
|


|-valign="top"
|-valign="top"
|Isotope simulation for CO and CH4 in GCHP
|Integration testing: Add GEOS-IT
|Lee Murray (Rochester)
|Yuanjian Zhang (WashU)
|Carbon simulation
|Quality Assurance
|
|


|-valign="top"
|-valign="top"
|Updated bottom-up global CH4 oil, gas, and coal emissions (GFEI v3)
|Separate mixing, emissions, and drydep
|Melissa Sulprizio (Harvard)<br>Tia Scarpelli (U. Edinburgh)<br>Zichong Chen (Harvard)
|Yuanjian Zhang (WashU)
|Emissions<br>CH4 simulation
|Structural
|
|


|-valign="top"
|-valign="top"
|Modularization of aerosols code for interface with GOCART in GEOS
|Intel IFX compiler
|Christoph Keller (GMAO)
|Bob Yantosca (Harvard)
|Structural
|Structural
|
|


|-valign="top"
|-valign="top"
|Improve load balancing in GCHP
|CMake option to only build libraries but not executable, also passing C-preprocessor statements to turn off code
|Seb Eastham (MIT)
|Bob Yantosca (Harvard)<br>Lee Murray (Rochester)
|Model performance
|Structural
|
|


|-valign="top"
|-valign="top"
|Testing the use of monthly mean MERRA-2 CWC with Pb-210 aerosol tracer
|Remove differences introduced when breaking up GC-Classic runs in time; and flexible precision in HEMCO
|Bo Zhang (NIA)<br>Hongyu Liu (NIA / NASA Langley)
|Lizzie Lundgren (Harvard)
|Transport
|Structural
|
|


|-valign="top"
|-valign="top"
|Testing the use of a new scavenging parameterization developed by Luo and Yu for cold cloud with Pb-210 aerosol tracer
|Limit allocation of State_Met to what is needed per simulation
|Gan Luo (SUNY Albany)<br>Fangqun Yu (SUNY-Albany)
|Melissa Sulprizio (Harvard)
|Transport
|Structural
|
|


|-valign="top"
|-valign="top"
|Evaluate vertical mixing in GEOS-Chem with model-model and model-observation comparisons
|Using 3-D precipitation fluxes to calculate precipitation formation and re-evaporation in scavenging (to be consistent with GEOS/GOCART & ground precipitation)
|Seb Eastham (MIT)<br>Clara Orbe (NASA GISS)<br>Andrew Schuh (CSU)
|Gan Luo (Albany)<br>Hongyu Liu (NIA/LaRC)<br>Bo Zhang (NIA/LaRC)
|Transport
|Wet deposition
|
|


Line 659: Line 769:


|-valign="top"
|-valign="top"
|Updates to Aromatic chemistry
|Modal aerosol model (MAM7) in GCHP
|Stephen MacFarlane (UOW)<br>Jenny Fisher (UOW)
|Shreya Sharma (MIT)
|Aerosols
|
 
|-valign="top"
|Online OCIM ocean biogeochemistry
|Lee Murray (Rochester)<br>Hannah Horowitz (UIUC)<br>Chris Holmes (FSU)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|Nitrate photolysis
|Perchlorate chemistry
|Mat Evans (York)<br>Thomas Sherwen (York)<br>Matthew Rowlinson (York)
|Yuk Chun Chan (UW)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|In aerosol chemistry Halogens
|Non-stomatal dry deposition (2-layer canopy model)
|Mat Evans (York)<br>Hansen Cao (CU Boulder)
|Michael Vermeuel (Purdue)
|Chemistry
|Dry Deposition
|
 
|-valign="top"
|Continental chloride particle emissions (salty dust, road salt)
|Jessica Haskins (Utah)
|Emissions
|
|


|-valign="top"
|-valign="top"
|Benchmark box model of GC Chemistry
|Multivolatility emission inventory to address gaps in EDGAR/HTAP etc.
|Katie Travis (NASA)
|Ruochong (Tshingua)
|Chemistry
|Emissions
|
|


|-valign="top"
|-valign="top"
|Alkyl nitrates Alk7, PHAN
|Lightning NOx production rates
|Katie Travis (NASA)
|Bex Horner (UCL)
|Chemistry
|Emissions
|
|


|-valign="top"
|-valign="top"
|Add stratospheric ozone species to full-chemistry simulations
|HFO and CF3CHO
|Lee Murray (Rochester)
|Beth Killen (Wollongong)<br>Jenny Fisher (Wollongong)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|Perchlorate chemistry
|Glyoxal updates from isoprene
|Yuk Chun Chan (UWAB)
|Tzung-May Fu (SUSTech)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|Explicit heterogeneous sulfate chemistry
|Iodine chemistry
|Katie Travis (NASA)<br>Becky Alexander (UT)
|Becky Alexander (UW)<br>Xuan Wang (CUHK)
|Chemistry
|Chemistry
|
|


|-valign="top"
|-valign="top"
|HOx and ozone "emissions" from lightning as option in model to play with
|GFED5 biomass burning
|Jingqiu (Alaska)<br>Lee Murray (Rochester)
|Eric Roy (MIT)
|Emissions
|Emissions
|
|


|-valign="top"
|-valign="top"
|Sea salt aerosol from sea ice leads
|Ocean Hg surface concentrations for 2010-2020 from multi-model ensemble
|Hannah Horowitz (U. Illinois)
|Eric Roy (MIT)<br>Ari Feinberg (IQF-CSIC)
|Emissions
|Hg simulation
|
 
|-valign="top"
|Soil Hg emissions 2010-2020
|Eric Roy (MIT)<br>Ari Feinberg (IQF-CSIC)
|Hg simulation
|
 
|-valign="top"
|Air-sea exchange parameterization
|Eric Roy (MIT)
|Hg simulation
|
 
|-valign="top"
|Soil Hg emissions parameterization
|Ari Feinberg (IQF-CSIC)
|Hg simulation
|
 
|-valign="top"
|Sea salt uptake of GOM
|Eric Roy (MIT)
|Hg simulation
|
|


|-valign="top"
|-valign="top"
|Drought-stress algorithm
|Photoreduction rate constant
|Wei Li (U. Houston)
|Eric Roy (MIT)
|Hg simulation
|
|
|-valign="top"
|New observations (2010-2020) in standardized Hg benchmark for intercomparison
|Eric Roy (MIT)/Ari Feinberg (IQF-CSIC)
|Hg simulation
|
|


|-valign="top"
|-valign="top"
|Biomass burning injection height profiles
|Hg simulation in GCHP
|Inderjeet Singh (WashU)
|Eric Roy (MIT)
|Emissions
|Hg simulation
|
|


|-valign="top"
|-valign="top"
|OCIM integration
|OCIM - biogeochemical model - (C/P/N/Fe - no Hg yet) (MATLAB)
|Chris Holmes (FSU)<br>Lee Murray (Rochester)
|Hannah Horowitz (UIUC)
|Hg simulation
|
|
|-valign="top"
|Possibly updating Hg oxidation chemistry based on Utah field campaigns
|Jessica Haskins (Utah)
|Hg simulation
|
|


|-valign="top"
|-valign="top"
|Updating landcover products in GEOS-Chem
|New halogen/aerosol fields (surface area / AOD) from 10-year 14.4 benchmark simulation available online
|Chris Holmes (FSU)<br>Jeff Geddes (BU)
|Viral Shah (NASA GMAO); Eric Roy (MIT); Ari Feinberg (IQF-CSIC)
|Input data
|Input data
|
|


|-valign="top"
|-valign="top"
|Dry deposition physical improvement
|Extend IMI to CO2 (ICI)
|Chris Holmes (FSU)
|Hannah Nesser (JPL)
|Dry deposition
|Inversions
|
 
|-valign="top"
|Global emission inventory of metals
|Tzung-May Fu (SUSTech); He Zhong Tian (Peking Normal U)
|Metals simulation
|
 
|-valign="top"
|Investigate and improve performance of aerosol chemistry
|Bob Yantosca (Harvard)
|Performance
|
 
|-valign="top"
|PAH - update from version 11
|Lexia Cicone (MIT)
|POPs simulation
|
 
|-valign="top"
|Species database more accessible; doc updates; TOL discussion
|Jessica Haskins (Utah)
|Structural
|
 
|-valign="top"
|Stretched-grid plotting in GCPy
|Killian Murphy (York)
|Tools
|
 
|-valign="top"
|Model inter-comparison of transport (GEOS, GCHP, GCClassic)
|Lizzie Lundgren (Harvard), Emma Knowland (NASA)
|Transport
|
|


|-valign="top"
|-valign="top"
|TOMAS WRF-GC in regional Thailand simulation
|Comparing mass fluxes in GCHP vs. traditional lat/lon wind
|Win Trivitayanurak (Chulalongkorn U)
|Yuanjian Zhang (WashU), Seb Eastham (ICL)
|Aerosols
|Transport
|
|


|}
|}

Latest revision as of 22:09, 21 January 2025

On this page we list the current priorities for GEOS-Chem development. This list is continuously updated based on code readiness and input from the Working Groups and the Steering Committee. For history of past releases see the GEOS-Chem Versions wiki page.

Merged and awaiting release

See the links below for items merged and awaiting release.

Mergeable at any time Version in development
GEOS-Chem no-diff-to-benchmark GEOS-Chem 14.6.0

Feature integration in progress

Features listed in this table are actively being integrated into GEOS-Chem by the GEOS-Chem Support Team. In addition, we continuously implement structural updates in the model to maintain and develop coupling with other models including GEOS, CESM, and the model adjoint.

Feature Contributor(s) Model scope Ease of implementation Notes and References
New version of CEDS at 0.1 deg Dandan Zhang (WashU) Emissions Simple
Use USTAR read from GEOS instead of calculating from U10M and V10M Yuanjian Zhang (WashU) Emissions Simple
  • Slated for 14.6.0
  • HEMCO PR #279
  • NOTE: WashU will recompute mass tuning factors for each met field & resolution (GCClassic)
Rice methane emissions Zichong Cheng (Harvard) Carbon simulation
+ Emissions
Simple
Retire CH4, CO2, tagCO simulations in favor of the carbon simulation Melissa Sulprizio (Harvard) Carbon gases Simple
Make GC-Classic bit-for-bit reproducible upon restart
(part 1 of 2)
Lizzie Lundgren (Harvard) GC-Classic Medium
Capture all trop and PBL height changes in budget diagnostics Chris Holmes (FSU)
Lizzie Lundgren (Harvard)
Diagnostics Medium
Add run directory creation support for processed cubed-sphere GEOS-IT meteorology Yuanjian Zhang (WashU) GCHP Simple
Fixed PDOWN definition and re-evaporation requirement for washout Yuanjian Zhang (WashU) Convection Simple

Prioritized and in the queue

Features listed in this table are prioritized for integration into GEOS-Chem in the near future.

Feature Contributor(s) Model scope Ease of implementation Delivery status Notes and References
Correct the issue that injection height has been artificially decreased by HEMCO Lixu Jun (Montana) Emissions Simple Delivered
June 2024
Capability to run GCClassic at 0.125x0.15625 resolution Melissa Sulprizio (Harvard)
Xiaolin Wang (Harvard)
Nested grid Simple Delivered
Strat-adjusted RF in GCC and GCHP Connor Barker (UCL)
Eloise Marais (UCL)
Radiation Simple Delivered
Archived TCR-2 OH fields for carbon simulations Kazu Miyazaki (JPL)
Melissa Sulprizio (Harvard)
Input data Simple Data delivered
Oct 2024
  • This will be the default OH, but users will have the option of selecting other OH fields
  • geos-chem issue #2537
Dust non-sphericity impacts on optical properties Inderjeet Singh (WashU) Aerosols Medium Not yet delivered

Ready to go in

Features listed in this table are ready to go in but have either not been delivered or are not yet prioritized for integration into GEOS-Chem.

Feature Contributor(s) Model scope Delivery status Notes and Refereneces


Binary Activity Thermodynamic (BAT) model for non-ideal mixing of water and organics in organic aerosol Camilo Serrano (McGill)
Andreas Zuend (McGill)
Aerosols Not delivered
Update UCX to include gravitational settling of aerosol species beyond just BCPI Conor Barker (UCL)
Eloise Marais (UCL)
Aerosols Not delivered
Seasalt aerosol from sea ice leads (2002-2011) Hannah Horrowitz (UIUC) Aerosols Not delivered
  • Offline and online, ready to go in HEMCO (optional in addition to existing seasalt emissions)
Global organic N dep from various emissions; nitrate aromatics updates May Fu (SUSTech) Chemistry +
Deposition
Not delivered
Dry deposition to F90 to improve readability Chris Holmes (FSU) Dry Deposition Not delivered
Ecophysiology module in GEOS-Chem for biosphere-atmosphere exchange Joey Lam (CUHK)
Amos Tai (CUHK)
Dry deposition Delivered
Feb 2021
Updated bottom-up global CH4 oil, gas, and coal emissions (GFEI v3) Tia Scarpelli (Carbon Mapper)
Melissa Sulprizio (Harvard)
Emissions
FRP-based fire emissions for eastern US at 0.2 (2019-2020) Chris Holmes (FSU) Emissions Not delivered
China agriculture NH3 emissions Amos Tai (CUHK) Emissions Not delivered
T-dependent anthropogenic VOCs May Fu (SUSTech) Emissions Not delivered
  • Option. Requires processing existing anthropogenic VOC emissions to generate offline emissions to read in. Parameterised for China.
New source functions for transport tracers beryllium-7 and beryllium-10 Minjie Zheng (ETH) Emissions Delivered
June 2024
LPJ land cover (global), fire (W US), dust emissions (SW N America), 1700-2100 Yang Li (Baylor U)
Loretta Mickley (Harvard)
Emissions Delivered
  • Data involves many files- need to think about temporal frequency
Hg geogenic emissions (volcanic, rock weathering) Eric Roy (MIT) Emissions Not delivered
Hg biomass burning - FINN2.5 & GFED4 Eric Roy (MIT) Emissions Not delivered
BCC-GC online Lin Zhang (PKU) External Model Not delivered
GC-YIBS with online fire emissions Xu Yue (NUIST)
Hong Liao (NUIST)
External Model Not delivered
GISS-GC offline (GCAP) Lee Murray (Rochester) GCAP Not delivered

Almost there (< 6 months)

Features listed in this table are in development and will likely be delivered to the GEOS-Chem Support Team within the next 6 months.

Feature Contributor(s) Model scope Notes and References
Fixes to stratospheric aerosol settling Connor Barker (UCL)
Eloise Marais (UCL)
Aerosols
DMS chemistry in v14 Linia Tashmim (UCR)
Will Porter (UCR)
Chemistry
NO2+OH+H2O kinetics Mat Evans (York) Chemistry
Use LSODE or Backward Euler integrator in KPP for faster kinetics Bob Yantosca (Harvard) Chemistry
  • LSODE appears to be non-thread-safe for OpenMP parallelization due to legacy code, and thus fails when used in GEOS-Chem Classic. Bob Y. is investigating if this can be fixed, or if we should proceed to using Backwards Euler.
Load balancing in chemistry solver (GCHP) Zhouran Sun (WashU) Chemistry +
Performance
Active chemistry in mesosphere for both GCHP and GCClassic Helena McDonald (MIT)
Sebastian Eastham (ICL)
Chemistry
Updated aromatic oxidation Stephen MacFarlane (Wollongong)
Jenny Fisher (Wollongong)
Chemistry
MCO3 uptake by cloud forming MP; leading to lower PAN Laura Yang (Harvard) Chemistry
Implement isotope simulation for CH4 in the carbon simulation Lee Murray (Rochester) Chemistry
  • Will have to change negative emissions from soil to a first-order loss process
Documentation for adding additional aerosol species Connor Barker (UCL) Documentation
Column diagnostics Lizzie Lundgren (Harvard)
Viral Shah (GMAO)
Diagnostics
TOMAS rate diagnostics -- improve performance Betty Croft (WashU/Dal) Diagnostics +
Performance
Archive gamma values from heterogeneous chemistry Bob Yantosca (Harvard) Diagnostics
RRTMG Documentation GCST Documentation
Canopy Physics Model Sam Silva (MIT) Dry Deposition
Dry deposition diagnostics by land cover Holly Nowell (FSU)
Chris Holmes (FSU)
Dry Deposition
Dry deposition process diagnostics Holly Nowell (FSU)
Chris Holmes (FSU)
Dry Deposition
Biomass burning for TOMAS Nicole June (CSU) Emissions +
Microphysics
Historic biomass burning (1750-2010) Pengfei Liu (Georgia Tech) Emissions
New prior CO2 biospheric fluxes from CMS-FLUX and GMAO Kevin Bowman (JPL)
Lesley Ott (GMAO)
Emissions
  • GMAO can provide high-resolution fluxes (as high as 12 km)
Snowpack Br2 emission Chris Holmes (FSU) Emissions
EDGAR v8.1_toxHg emissions for 1970-2022 Eric Roy (MIT) Emissions
Improve pressure handling in GCHP advection Yuanjian Zhang (WashU)
Seb Eastham (ICL)
GCHP
Add error trap for duplicate scale factors in HEMCO Bob Yantosca (Harvard) HEMCO
Integration testing: Add stretched grid Lizzie Lundgren (Harvard) Quality Assurance
Integration testing: Add GCHP mass flux run Lizzie Lundgren (Harvard) Quality Assurance
Integration testing: Reinstate TOMAS40 Betty Croft (Dalhousie/WashU) Quality Assurance
Continue cleanup of C-preprocessor switches Lizzie Lundgren (Harvard) Structural
Updates to Luo deposition scheme Gan Luo (Albany) Wet Deposition
  • New version, keep as switch (not default)
Testing the use of a new scavenging parameterization developed by Luo and Yu for cold cloud with Pb-210 aerosol tracer Gan Luo (Albany)
Fangqun Yu (Albany)
Wet Deposition

Over the horizon (6-12 months)

Features listed in this table are in development and will likely be delivered to the GEOS-Chem Support Team in the 6-12 months timeframe.

Feature Contributor(s) Model scope Notes and References
ML algorithms for bulk aerosol Arshad Nair (Albany)
Fangqun Yu (Albany)
Aerosols
Heterogeneous sulfate chemistry Katie Travis (NASA) Chemistry
H2 as an active species Seb Eastham (ICL) Chemistry
HCN, acetonitrile as fire tracers Kevin Bates (CU Boulder) Chemistry
Implement ethane in carbon simulation Yuzhong Zhang (Westlake) Chemistry
Mesospheric source of CO Dylan Jones (UofT)
Pam Wales (NASA GSFC)
Emissions
Drought-stress algorithm Wei Li (Houston) Emissions
Physically-based resolution correction for BVOC emissions using MEGAN May Fu (SUSTech) Emissions
Canadian forest fire prediction system (Canada government forecast model) Robin Stevens (Montreal) Emissions
Cooking emissions (not biofuel) Kelvin Bates (CU Boulder) Emissions
State-specific annual emissions scaling factors (US) (1990-2021) Ishir Dutta (MIT) Emissions
GISS-GC online Lee Murray (Rochester) External model
Hybrid MPI-OpenMP in GCHP Seb Eastham (MIT)
Killian Murphy (York)
Lizzie Lundgren (Harvard)
GCHP
MAPL3: Update to MAPL3 in GCHP, including replacement of ExtData.rc and HISTORY.rc with YAML files Lizzie Lundgren (Harvard) GCHP
MAPL3: Comply with MAPL "positive" standard in GCHP diagnostic files Lizzie Lundgren (Harvard) GCHP
MAPL3: Wildcards in GCHP History Lizzie Lundgren (Harvard) GCHP
MAPL3: Output emissions with positive up convention in GCHP Lizzie Lundgren (Harvard) GCHP
Assessment/improvement of OpenMP performance in GC-Classic and HEMCO standalone Bob Yantosca (Harvard) Performance
Photophysical oxidation of aldehydes Paulo Sebastianelli (Wollongong)
Jenny Fisher (Wollongong)
Chemistry
DMS updates Will Porter (UCR) Chemistry
Furans emission and chemistry Lixu Jin (Montana)
Lu Hu (Montana)
Chemistry +
Emissions
Cl2 prodcution from Fe aerosol Qianjie Chen (HK Poly)
Becky Alexander (UW)
Chemistry
VCP emissions Kevin Bates (CU Boulder) Emissions
Bidirectional land-atmosphere exchange for Hg Yuying Cui (MIT/Tsinghua) Hg simulation
OH covariances for inversions Elise Penn (Harvard) Inversions
CESM2-GC offline Seb Eastham (ICL)
Lee Murray (Rochester)
Met fields
Re-binning of off-line sea salt and dust for TOMAS Betty Croft (Dalhousie) Microphysics
TOMAS nucleation updates Sam O'Donnell (CSU) Microphysics
Stratospheric aerosol APM Fangqun Yu (SUNY Albany) Microphysics
Transition from MERRA-2 to GEOS-IT for benchmarking Yuanjian Zhang (WashU) Quality Assurance
Automate integration testing on AWS Yidan Tang (WashU) Quality Assurance
Integration testing: Add across end of year run GCST Quality Assurance
Integration testing: Add GEOS-IT Yuanjian Zhang (WashU) Quality Assurance
Separate mixing, emissions, and drydep Yuanjian Zhang (WashU) Structural
Intel IFX compiler Bob Yantosca (Harvard) Structural
CMake option to only build libraries but not executable, also passing C-preprocessor statements to turn off code Bob Yantosca (Harvard)
Lee Murray (Rochester)
Structural
Remove differences introduced when breaking up GC-Classic runs in time; and flexible precision in HEMCO Lizzie Lundgren (Harvard) Structural
Limit allocation of State_Met to what is needed per simulation Melissa Sulprizio (Harvard) Structural
Using 3-D precipitation fluxes to calculate precipitation formation and re-evaporation in scavenging (to be consistent with GEOS/GOCART & ground precipitation) Gan Luo (Albany)
Hongyu Liu (NIA/LaRC)
Bo Zhang (NIA/LaRC)
Wet deposition

Longer term (12-24 months)

Features listed in this table are in development and will likely be delivered to the GEOS-Chem Support Team in the 12-24 months timeframe.

Feature Contributor(s) Model scope Notes and References
Modal aerosol model (MAM7) in GCHP Shreya Sharma (MIT) Aerosols
Online OCIM ocean biogeochemistry Lee Murray (Rochester)
Hannah Horowitz (UIUC)
Chris Holmes (FSU)
Chemistry
Perchlorate chemistry Yuk Chun Chan (UW) Chemistry
Non-stomatal dry deposition (2-layer canopy model) Michael Vermeuel (Purdue) Dry Deposition
Continental chloride particle emissions (salty dust, road salt) Jessica Haskins (Utah) Emissions
Multivolatility emission inventory to address gaps in EDGAR/HTAP etc. Ruochong (Tshingua) Emissions
Lightning NOx production rates Bex Horner (UCL) Emissions
HFO and CF3CHO Beth Killen (Wollongong)
Jenny Fisher (Wollongong)
Chemistry
Glyoxal updates from isoprene Tzung-May Fu (SUSTech) Chemistry
Iodine chemistry Becky Alexander (UW)
Xuan Wang (CUHK)
Chemistry
GFED5 biomass burning Eric Roy (MIT) Emissions
Ocean Hg surface concentrations for 2010-2020 from multi-model ensemble Eric Roy (MIT)
Ari Feinberg (IQF-CSIC)
Hg simulation
Soil Hg emissions 2010-2020 Eric Roy (MIT)
Ari Feinberg (IQF-CSIC)
Hg simulation
Air-sea exchange parameterization Eric Roy (MIT) Hg simulation
Soil Hg emissions parameterization Ari Feinberg (IQF-CSIC) Hg simulation
Sea salt uptake of GOM Eric Roy (MIT) Hg simulation
Photoreduction rate constant Eric Roy (MIT) Hg simulation
New observations (2010-2020) in standardized Hg benchmark for intercomparison Eric Roy (MIT)/Ari Feinberg (IQF-CSIC) Hg simulation
Hg simulation in GCHP Eric Roy (MIT) Hg simulation
OCIM - biogeochemical model - (C/P/N/Fe - no Hg yet) (MATLAB) Hannah Horowitz (UIUC) Hg simulation
Possibly updating Hg oxidation chemistry based on Utah field campaigns Jessica Haskins (Utah) Hg simulation
New halogen/aerosol fields (surface area / AOD) from 10-year 14.4 benchmark simulation available online Viral Shah (NASA GMAO); Eric Roy (MIT); Ari Feinberg (IQF-CSIC) Input data
Extend IMI to CO2 (ICI) Hannah Nesser (JPL) Inversions
Global emission inventory of metals Tzung-May Fu (SUSTech); He Zhong Tian (Peking Normal U) Metals simulation
Investigate and improve performance of aerosol chemistry Bob Yantosca (Harvard) Performance
PAH - update from version 11 Lexia Cicone (MIT) POPs simulation
Species database more accessible; doc updates; TOL discussion Jessica Haskins (Utah) Structural
Stretched-grid plotting in GCPy Killian Murphy (York) Tools
Model inter-comparison of transport (GEOS, GCHP, GCClassic) Lizzie Lundgren (Harvard), Emma Knowland (NASA) Transport
Comparing mass fluxes in GCHP vs. traditional lat/lon wind Yuanjian Zhang (WashU), Seb Eastham (ICL) Transport