Aerosols Working Group: Difference between revisions

From Geos-chem
Jump to navigation Jump to search
mNo edit summary
 
(45 intermediate revisions by 10 users not shown)
Line 6: Line 6:


{| border=1 cellspacing=0 cellpadding=5
{| border=1 cellspacing=0 cellpadding=5
|-
|-valign="top"
|bgcolor="#CCCCCC"|'''Aerosols Working Group Co-Chairs'''
!width="300px" bgcolor="#CCCCCC"|Aerosols Working Group Co-Chairs
|[http://web.mit.edu/heald/www/ Colette Heald], [http://pierce.atmos.colostate.edu/ Jeff Pierce]
|width="600px"|
|-
*[http://www.atmos.washington.edu/blog/beckya/becky-alexander/ Becky Alexander] (GitHub: [https://github.com/beckyalexander @beckyalexander])
|bgcolor="#CCCCCC"|'''Aerosols Working Group email list'''
*[http://pierce.atmos.colostate.edu/people.htm#jeff Jeff Pierce] (GitHub: [https://github.com/theloniuspunk @theloniuspunk])
|<tt>geos-chem-aerosols [at] seas.harvard.edu</tt>
*[https://profiles.ucr.edu/app/home/profile/wporter Will Porter] (Github [https://github.com/wporter @wporter])
|-
*[http://www.albany.edu/~yfq/ Fangqun Yu]
|bgcolor="#CCCCCC"|'''To subscribe to email list'''
 
|Send email to <tt>geos-chem-aerosols-join [at] seas.harvard.edu</tt>
|-valign="top"
|-
!bgcolor="#CCCCCC"|Aerosols Working Group email list
|bgcolor="#CCCCCC"|'''To unsubscribe from email list'''
|<tt>geos-chem-aerosols [at] g.harvard.edu</tt>
|Send email to <tt>geos-chem-aerosols-leave [at] seas.harvard.edu</tt>
 
|-valign="top"
!bgcolor="#CCCCCC"|To subscribe to email list
|Either
*Send an email to <tt>geos-chem-aerosols+subscribe [at] g.harvard.edu</tt>
Or
*Go to the [https://groups.google.com/a/g.harvard.edu/forum/#!forum/geos-chem-aerosols GEOS-Chem Aerosols Google Group]
*Click on '''Subscribe to this group'''
 
|-valign="top"
!bgcolor="#CCCCCC"|To unsubscribe from email list
|Either
*Send an email to <tt>geos-chem-aerosols+unsubscribe [at] g.harvard.edu</tt>
Or
*Go to the [https://groups.google.com/a/g.harvard.edu/forum/#!forum/geos-chem-aerosols GEOS-Chem Aerosols Google Group]
*Click on the '''My Settings''' button
*Click on '''Leave this group'''
 
|}
|}


Line 39: Line 56:
|-
|-
|Dalhousie
|Dalhousie
|Simulation of the absorbing aerosol index
|Decadal trends in PM2.5
|[mailto:mhammer17@hotmail.com Melanie Hammer]
|[mailto:ch296755@dal.ca Chi Li]
|26 Sep 2012
|13 Apr 2017
|-
|-
|Dalhousie
|Dalhousie
|Aerosol microphysics simulation of AOD and PM2.5
|Arctic aerosol number distributions
|[mailto:AR731886@DAL.CA Arjya Sarkar]
|[mailto:croft@mathstat.dal.ca Betty Croft]
|26 Sep 2012
|13 Apr 2017
|-
|-
|Dalhousie
|Dalhousie
|Arctic aerosol
|Arctic black carbon
|[mailto:croft@mathstat.dal.ca Betty Croft]
|[mailto:jn231250@dal.ca Junwei Xu]
|25 Apr 2015
|13 Apr 2017
|-
|-
|Dalhousie
|Dalhousie
|Satellite-based estimates of Asian PM2.5
|Metals in PM2.5  
|[mailto:jn231250@dal.ca Junwei Xu]
|[mailto:jn231250@dal.ca Junwei Xu]
|26 Sep 2012
|13 Apr 2017
|-
|-
|Dalhousie
|Dalhousie
|Assimilation of CALIOP vertical profiles
|Interpreting SPARTAN to understand PM2.5 chemical composition
|[mailto:colin.lee@dal.ca Colin Lee]
|[mailto:cr330325@dal.ca Crystal Weagle]
|5 Dec 2013
|13 April 2017
|-
|-
|Dalhousie
|Dalhousie
|Satellite-based estimates of Global PM2.5
|Aerosol mass scattering efficiency
|[mailto:Aaron.van.Donkelaar@dal.ca Aaron van Donkelaar]
|[mailto:Robyn.Latimer@Dal.Ca Robyn Latimer]
|Jun 2010
|13 April 2017
|-
|-
|Harvard
|Harvard
|Irreversible uptake of isoprene SOA; estimate of organic aerosol yields with satellite observations
|Particulate sulfur via sulfur-formaldehyde (hydroxymethane sulfonate) chemistry in clouds
|[mailto:emarais@seas.harvard.edu Eloise Marais]
|[mailto:jmoch@g.harvard.edu Jonathan Moch]
|27 April 2014
|14 Dec 2018
|-
|-
|MIT
|MIT/Harvard
|Examining decadal trends in organic aerosol
|Implementing MOSAIC aerosols into GEOS-Chem
|[mailto:daridley@mit.edu David Ridley]
|[mailto:seastham@mit.edu Sebastian Eastham]
|22 Apr 2015
|11 May 2015
|-
|-
|MIT
|MIT
|Investigating uncertainty on aerosol physical & optical properties on AOD, radiative effects, and PM2.5 from space estimates
|Developing a simulation of bioaerosol
|[mailto:daridley@mit.edu David Ridley]
|[mailto:janssen@mit.edu Ruud Janssen]
|22 Apr 2015
|12 Apr 2017
|-
|MIT
|Integrating the reactive carbon budget in GEOS-Chem
|[mailto:sarahsaf@mit.edu Sarah Safieddine]
|22 Apr 2015
|-
|MIT
|Investigating Variability in Ammonia and Impacts on Inorganic PM formation
|[mailto:schiferl@mit.edu Luke Schiferl]
|22 Apr 2015
|-
|-
|MIT
|MIT
|Investigating the impact of land use change on atmospheric composition
|Investigating spread in carbonaceous aerosol impacts from fires due to emissions uncertainty
|[mailto:samsilva@mit.edu Sam Silva]
|[mailto:tscarter@mit.edu Tess Carter]
|22 Apr 2015
|29 Apr 2019
|-
|-
|MIT
|MIT
|Developing a simulation of brown carbon
|Testing OA simulation schemes against suite of airborne observations
|[mailto:xuanw12@mit.edu Xuan Wang]
|[mailto:sidhantp@mit.edu Sid Pai]
|22 Apr 2014
|29 Apr 2019
|-
|-
|MIT
|MIT
|Developing a scheme to describe the aging of organic aerosol
|Exploring aerosol simulation against remote observations from ATom
|[mailto:qichen@mit.edu Qi Chen]
|[mailto:chloegao@mit.edu Chloe Gao]
|8 Apr 2013
|29 Apr 2019
|-
|MIT/Dalhousie
|Developing a flexible land use module for GEOS-Chem and investigating the impacts of forest mortality on air quality in the United States
|[mailto:jgeddes@mit.edu Jeff Geddes]
|22 Apr 2015
|-
|MIT/CSU
|Characterizing the uncertainties in PM2.5 derived from satellite observations
|[mailto:bonne@atmos.colostate.edu Bonne Ford]
|22 Apr 2015
|-
|NASA LaRC
|transpacific transport of dust and sulfate; composition of Asian upper tropopause aerosol layer (ATAL).
|[mailto:t.d.fairlie@nasa.gov Duncan Fairlie]
|10 Apr 2013
|-
|SNU
|Implement the VBS method in GEOS-Chem for SOA
|[mailto:rjpark@snu.ac.kr Rokjin Park]<br>[mailto:cdswk@snu.ac.kr Dusung Jo]
|28 Sep 2012
|-
|SNU
|Siberian forest fire aerosols and climatic effects
|[mailto:rjpark@snu.ac.kr Rokjin Park]<br>[mailto:hb3099@hotmail.com Seungeun Lee]
|28 Sep 2012
|-
|-
|SUNY-Albany
|SUNY-Albany
Line 139: Line 121:
|-
|-
|SUNY-Albany
|SUNY-Albany
|Key processes controlling particle formation and growth in the atmosphere and implications
|Combining Measurements and Model Simulations of Particle Size Distributions to Improve Our Understanding of Particle Formation and Growth
|[mailto:fyu@albany.edu Fangqun Yu]<br>[mailto:gluo@albany.edu Gan Luo]
|[mailto:fyu@albany.edu Fangqun Yu]<br>[mailto:gluo@albany.edu Gan Luo]
|5 May 2015
|4 May 2017
|-
|SUNY-Albany
|Long-Term Trend of Particle Number Concentrations: Controlling Processes and Implications
|[mailto:fyu@albany.edu Fangqun Yu]<br>[mailto:gluo@albany.edu Gan Luo]
|4 May 2017
|-
|-
|UW
|UW
Line 165: Line 152:
|-
|-
|L'Aquila
|L'Aquila
|Analysis of long-term aerosol optical properties
|Analysis of aerosol optical properties using FlexAOD
|[mailto:gabriele.curci@aquila.infn.it Gabriele Curci]
|16 Apr 2017
|-
|L'Aquila
|AeroCom phase-3 intercomparisons: Biomass Burning, INSITU, Remote Sensing
|[mailto:gabriele.curci@aquila.infn.it Gabriele Curci]
|16 Apr 2017
|-
|L'Aquila
|Direct and first indirect effect of anthropogenic dust
|[mailto:gabriele.curci@aquila.infn.it Gabriele Curci]
|[mailto:gabriele.curci@aquila.infn.it Gabriele Curci]
|05 May 2015
|16 Apr 2017
|-
|-
|NIA / NASA LaRC
|NIA / NASA LaRC
Line 175: Line 172:
|-
|-
|NIA / NASA LaRC
|NIA / NASA LaRC
|Sources and variability of tropospheric aerosols over the North Atlantic
|Lifecycle, transport, and distribution of tropospheric aerosols over the western North Atlantic
|[mailto:Hongyu.Liu-1@nasa.gov Hongyu Liu]
|[mailto:Hongyu.Liu-1@nasa.gov Hongyu Liu]
|5 May 2015
|5 May 2015
|-
|-
|}
|UCLA
 
|Improve black carbon simulations in GEOS-Chem; BC aging microphysics; BC-snow interaction; BC radiative properties;
== Recent GEOS-Chem updates related to aerosols ==
|[mailto:cenlinhe@atmos.ucla.edu Cenlin He]
 
|8 May 2015
We have added the following updates pertaining to aerosols to recent GEOS-Chem versions:
 
{| border=1 cellspacing=0 cellpadding=5
|-bgcolor="#CCCCCC" valign="top"
!width="75px"|Version
!width="75px"|Released
!width="600px"|Description
!width="200px"|Contact
|-valign="top"
|[[GEOS-Chem v9-02|v9-02]]
|Mar 2014
|[[Secondary organic aerosols#SOA simulation with semi-volatile POA|Expansion of SOA option (SOA + nonvolatile POA)]]
|Havala Pye (formerly Caltech, now EPA)
 
|-valign="top"
|[[GEOS-Chem v9-02|v9-02]]
|Mar 2014
|[[Sulfate_aerosols#Cloud_water_pH_for_sulfate_formation|Cloud water pH for sulfate formation]]
|Becky Alexander (U. Washington)
 
|-valign="top"
|[[GEOS-Chem v9-02|v9-02]]
|Mar 2014
|[[Aerosol_optical_properties#Better_representation_of_OC_growth_with_RH_and_correction_to_sulfate_optics|Better representation of OC growth with RH and correction to sulfate optics]]
|David Ridley (MIT)<br>Randall Martin (Dalhousie)
 
|-valign="top"
|[[GEOS-Chem v9-02|v9-02]]
|Mar 2014
|[[Aerosol_optical_properties#Fix_to_jv_spec_aod.dat|Bug fix in jv_spec_aod.dat for dust species]]
|Gabriele Curci (U. L'Aquila)
 
|-valign="top"
|[[GEOS-Chem v9-02|v9-02]]
|Mar 2014
|[[Sea_salt_aerosols#Update_molecular_weight_of_sea_salt_tracers|Update molecular weight of sea salt tracers]]
|Colette Heald (MIT)
 
|-valign="top"
|[[GEOS-Chem v9-01-03|v9-01-03]]
|Sep 2012
|[[Mineral_dust_aerosols#Sub-micron_dust_mass_partitioning_change|Dust submicron size distribution for optics]]
|Dave Ridley, CSU
 
|-valign="top"
|[[GEOS-Chem v9-01-03|v9-01-03]]
|Sep 2012
|Modifications to sea salt [[Sea_salt_aerosols#SST_dependent_sea_salt_emissions|emissions]] and [[Sea_salt_aerosols#Updates_to_sea_salt_dry_deposition|dry deposition]]
|Lyatt Jaegle and Becky Alexander, U Washington
 
|-valign="top"
|[[GEOS-Chem v9-01-03|v9-01-03]]
|Sep 2012
|Various updates to wet deposition to impact aerosol simulation, see [http://wiki.seas.harvard.edu/geos-chem/index.php/Wet_deposition#Further_updates Wet Deposition Further Updates]
|Qiaoqiao Wang, Harvard
 
|-valign="top"
|[[GEOS-Chem v9-01-02|v9-01-02]]
|Nov 2011
|Implementation of [[APM aerosol microphysics]] model
|Fangqun Yu, SUNY Albany<br>Gan Luo, SUNY Albany
 
|-valign="top"
|[[GEOS-Chem v9-01-02|v9-01-02]]
|Nov 2011
|[[GEOS-Chem_v9-01-01#Inconsistencies_in_aerosol_diagnostics|Removing inconsistencies in aerosol diagnostics]]
|Sungshik Patrick Kim, Harvard
 
|-valign="top"
|[[GEOS-Chem v9-01-02|v9-01-02]]
|Nov 2011
|[[Dry_deposition#Aerosol_dry_deposition_velocities_over_snow_and_ice_surfaces|Updated aerosol dry deposition velocities over snow and ice surfaces]]
|Jenny Fisher, Harvard
 
|-valign="top"
|[[GEOS-Chem v9-01-02|v9-01-02]]
|Nov 2011
|[[Anthropogenic_emissions#Streets_2000|Added seasonality to Streets NH3 emissions over Asia]]
|Jenny Fisher, Harvard
 
|-valign="top"
|[[GEOS-Chem v9-01-01|v9-01-01]]
|Jun 2011
|[[FlexAOD]] post-processing tool for the community
|Gabriele Curci, University of l'Aquila
 
|}
 
--[[User:Melissa Payer|Melissa Sulprizio]] 11:14, 17 January 2014 (EST)
 
== On-going Aerosol Working Group Developments ==
 
We plan to add these aerosol-related updates to GEOS-Chem in the next few releases:
 
{| border=1 cellspacing=0 cellpadding=5
|-bgcolor="#CCCCCC" valign="top"
!width="600px"|Update
!width="200px"|Authors
!width="200px"|Planned release
|-valign="top"
|[[Coupling GEOS-Chem with RRTMG|Integrating a radiative transfer model into GEOS-Chem]]
|Colette Heald (MIT)<br>David Ridley (MIT)<br>Karen Cady-Pereira (AER)<br>Matt Alvarado (AER)
|
*Delivered to [[GEOS-Chem Support Team|GCST]]
*Slated for inclusion into [[GEOS-Chem v10-01|v10-01]]
|-valign="top"
|[[Mineral dust aerosols#Surface chemistry on dust|Simplified description of uptake of SO2, nitric acid and sulfuric acid on mineral dust]]
|Duncan Fairlie, Langley
|
*Delivered to [[GEOS-Chem Support Team|GCST]]
*Slated for inclusion into [[GEOS-Chem v10-01|v10-01]]
|}
 
--[[User:Bmy|Bob Y.]] 15:05, 25 April 2014 (EDT)
 
== Future Development Priorities ==
 
These are topics which were raised at IGC6 as future updates & development priorities for GEOS-Chem which have not yet been incorporated into the standard code:
 
{| border=1 cellspacing=0 cellpadding=5
|-bgcolor="#CCCCCC" valign="top"
!width="600px"|Update
!width="200px"|Authors
!width="200px"|Priority
 
|-valign="top"
|Addition of effective wind speed to met fields for consistent resolution dust/sea salt emissions
|Jeff Pierce (CSU)<br>David Ridley (MIT)<br>[[GEOS-Chem Support Team|GCST]]
|medium
 
|-valign="top"
|Addition of deposition observations to aerosol benchmark
|Colette Heald (MIT)
|low
 
|-valign="top"
|dust simulation expansion (tagged simulation, oxalate, P, Fe chemistry)
|Matthew Johnson (NC State)
|low
 
|-valign="top"
|DMS oxidation scheme updating
|TBD
|low
 
|-valign="top"
|Investigation of how aerosol water is treated in PM comparisons (ISORROPIA vs. hygroscopic growth curves)
|TBD
|low
 
|-valign="top"
|APM capability for nested grid
|Fangqun Yu (SUNY Albany)
|
 
|-valign="top"
|TOMAS capability for nested grid
|Jeff Pierce (Dalhousie)
|
 
|-valign="top"
|Tagged sulfate and nitrate simulation
|Becky Alexander (U. Washington)
|
 
|-valign="top"
|Improved dust simulation in nested-grid model
|Rokjin Park (Seoul National University)
|
 
|}
 
--[[User:Bmy|Bob Y.]] 15:04, 25 April 2014 (EDT)
 
== Aerosol optical properties ==
 
Please visit our [[Aerosol optical properties|aerosol optical properties wiki page]] for more information about:
 
# [http://www.atmos.colostate.edu/~heald/docs/GEOS_Chem_optics_description.pdf  Description of GEOS-Chem aerosol optics]
# [[Aerosol optical properties#Aerosol optical properties update for GEOS-Chem v8-03-01|Aerosol optical properties update for v8-03-01]]
# [[Aerosol optical properties#Aerosol optical properties at high spectral resolution|Aerosol optical properties at high spectral resolution]]
 
Here is a list of updates that were considered when this was last reviewed in 2010 (2, 4 and 5 are included in the [[GEOS-Chem v8-03-01|v8-03-01]] update):
 
{| border=1 cellspacing=0 cellpadding=5
|- bgcolor="#cccccc"
!width="600px"|Proposed Update (include information on old values if known)
!width="200px"|Reference
!width="200px"|Contact
|-
|Account for absorption in the 300-500 nm range by OC, which may be greater than presently treated.  Currently we have OC ss albedo in this range being > 0.95, though it may be lower than 0.85.
|[http://www.atmos-chem-phys.net/8/6665/2008/acp-8-6665-2008.pdf Barnard et al, 2008]
|[mailto:daven.henze@colorado.edu Daven Henze]
|-
|Expand Mie table to include more wavelengths.  Most literature values compare at 500 or 550 nm. Current GC lookup table includes 400, then 600.  A wider range is also necessary for integrating to get total SW flux; something greater than 1500 perhaps?
|[http://www.atmos-chem-phys.net/4/183/2004/acp-4-183-2004.html Martin et al, 2004]
|[mailto:daven.henze@colorado.edu Daven Henze]  
|-
|Consider using the water content of the fine mode aerosol calculated in the aerosol thermodynamic module rather than hygroscopic growth curves to estimate wet particle effective radius.
|N/A
|[mailto:daven.henze@colorado.edu Daven Henze]
|-
|Consider changing the "default" AOD diagnostic wavelength from 400 nm to 550nm (for matching with MODIS & CALIPSO)
|N/A
|[mailto:heald@mit.edu Colette Heald]
|-
|Treat the radius of hydrophylic organic aerosol similar to that of sulfate.  This is based on observations that organic aerosol and sulfate are often internally mixed.  Should we consider something similar for black carbon?   
|[http://cat.inist.fr/?aModele=afficheN&cpsidt=17219054 Rupkheti et al., 2007]
|[mailto:randall.martin@dal.ca Randall Martin]
|}
 
 
Additional updates to aerosol optics since v8-03-01:
 
{| border=1 cellspacing=0 cellpadding=5
|- bgcolor="#cccccc"
!width="600px"|Update
!width="200px"|Version Number
!width="200px"|Contact
|-
|[[GEOS-Chem_v9-01-02#Overhaul of aerosol optical depth diagnostics|Overhaul of AOD diagnostics]]
|v9-01-02
|Patrick Kim (Harvard)
|-
|-
|[[Mineral dust aerosols#Sub-micron dust mass partitioning change|Dust submicron size distribution for optics]]
|UCLA
|v9-01-03
|Black carbon emissions, simulations and its radiative effects over the Arctic
|David Ridley (CSU, now MIT)
|[mailto:qiling@atmos.ucla.edu Ling Qi]
|8 May 2015
|-
|-
|[[Aerosol_optical_properties#Fix_to_jv_spec_aod.dat|Bug fix in jv_spec_aod.dat for dust species]]
|UCLA
|v9-02
|Improve aerosol wet scavenging and dry deposition in GEOS-Chem
|Gabriele Curci (l'Aquila)
|[mailto:qiling@atmos.ucla.edu Ling Qi]<br>[mailto:cenlinhe@atmos.ucla.edu Cenlin He]
|8 May 2015
|-
|-
|[[Aerosol optical properties#Better representation of OC growth with RH and correction to sulfate optics|Update jv_spec.dat and jv_spec_aod.dat with better representation of OC growth with RH and correction to sulfate optics]]
|v9-02
|Dave Ridley (MIT) and Randall Martin (Dalhousie)
|}
|}


== Related Topics ==
== Related Pages ==
* [[Aerosol emissions]]
* [[Aerosol emissions]]
* Aerosol microphysics simulations:
* Aerosol microphysics simulations:
Line 429: Line 202:
* [[Carbonaceous aerosols]]
* [[Carbonaceous aerosols]]
* [[Mineral dust aerosols]]
* [[Mineral dust aerosols]]
* [[Secondary organic aerosols]]
* [[Sea salt aerosols]]
* [[Sea salt aerosols]]
* [[Sulfate aerosols]]
* [[Sulfate aerosols]]
* [[ISORROPIA II]]
* [[ISORROPIA II]]
* [[Photolysis mechanism|Photolysis mechanisms in GEOS-Chem]]
* [[Photolysis mechanism|Photolysis mechanisms in GEOS-Chem]]
== Issues / Topics for Discussion ==
=== Organic Aerosol Density (v.10-01) ===
The organic aerosol density (1800 kg/m3) for calculating aerosol optical depth in aerosol_mod.F, based on Hess et al. (1997), is outdated and not representative of organic aerosols. The value is for a generic water soluble aerosol that could include sulfate, nitrate, SOA etc. Instead, we suggest GEOS-Chem users replace this with a density of 1300 kg/m3. There are numerous references that corroborate this value, or a value between 1200-1400 kg/m3. There are too many to list, but see for example p. 5174-5175 of Hallquist et al., ACP, 2007.
To make the change in aerosol_mod.F simply replace '''MSDENS(3) = 1800''' with '''MSDENS(3) = 1300''' in the RDAER subroutine. This leads to a 40% increase in organic carbon AOD.
Update by Eloise Marais (Harvard) and Melanie Hammer (Dalhousie).
--[[User:Emarais|Emarais]] 21:06, 6 May 2015 (EDT)
----

Latest revision as of 22:07, 8 June 2024

All users interested in the GEOS-Chem aerosol simulations are encouraged to subscribe to the aerosols email list (click on the link in the contact information section below).

Information on existing projects and future developments in aerosols will be posted here. We encourage user groups to keep their information up-to-date.

Contact information

Aerosols Working Group Co-Chairs
Aerosols Working Group email list geos-chem-aerosols [at] g.harvard.edu
To subscribe to email list Either
  • Send an email to geos-chem-aerosols+subscribe [at] g.harvard.edu

Or

To unsubscribe from email list Either
  • Send an email to geos-chem-aerosols+unsubscribe [at] g.harvard.edu

Or

Current GEOS-Chem Aerosol Projects, alphabetized by institution (please add yours!)

User Group Description Contact Person Date Added
Beijing/SUNY-Albany/L'Aquila Representing GEOS-Chem in the AEROCOM intercomparisons May Fu
Fangqun Yu
Gabriele Curci
28 Jul 2010
Columbia University Multiphase SOA formation in GEOS-Chem Faye McNeill 23 Apr 2015
Dalhousie Decadal trends in PM2.5 Chi Li 13 Apr 2017
Dalhousie Arctic aerosol number distributions Betty Croft 13 Apr 2017
Dalhousie Arctic black carbon Junwei Xu 13 Apr 2017
Dalhousie Metals in PM2.5 Junwei Xu 13 Apr 2017
Dalhousie Interpreting SPARTAN to understand PM2.5 chemical composition Crystal Weagle 13 April 2017
Dalhousie Aerosol mass scattering efficiency Robyn Latimer 13 April 2017
Harvard Particulate sulfur via sulfur-formaldehyde (hydroxymethane sulfonate) chemistry in clouds Jonathan Moch 14 Dec 2018
MIT/Harvard Implementing MOSAIC aerosols into GEOS-Chem Sebastian Eastham 11 May 2015
MIT Developing a simulation of bioaerosol Ruud Janssen 12 Apr 2017
MIT Investigating spread in carbonaceous aerosol impacts from fires due to emissions uncertainty Tess Carter 29 Apr 2019
MIT Testing OA simulation schemes against suite of airborne observations Sid Pai 29 Apr 2019
MIT Exploring aerosol simulation against remote observations from ATom Chloe Gao 29 Apr 2019
SUNY-Albany Effects of size-resolved aerosol microphysics on aerosol radiative forcing and chemistry Fangqun Yu
Gan Luo
5 May 2015
SUNY-Albany Combining Measurements and Model Simulations of Particle Size Distributions to Improve Our Understanding of Particle Formation and Growth Fangqun Yu
Gan Luo
4 May 2017
SUNY-Albany Long-Term Trend of Particle Number Concentrations: Controlling Processes and Implications Fangqun Yu
Gan Luo
4 May 2017
UW Sources of sea salt aerosol in polar regions: Blowing snow and Frost flowers Jiayue Huang
Lyatt Jaeglé
22 Apr 2015
UW Sea salt aerosols and their effects on global tropospheric chemistry Lyatt Jaeglé
Jiayue Huang
22 Apr 2015
UW Sulfate formation via oxidation of SO2 by hypohalous acids (e.g., HOBr) Becky Alexander
Qianjie Chen
22 April 2015
University of Wollongong Characterizing interannual variability of Australian dust export and deposition Jesse Greenslade
Jenny Fisher
23 April 2015
L'Aquila Analysis of aerosol optical properties using FlexAOD Gabriele Curci 16 Apr 2017
L'Aquila AeroCom phase-3 intercomparisons: Biomass Burning, INSITU, Remote Sensing Gabriele Curci 16 Apr 2017
L'Aquila Direct and first indirect effect of anthropogenic dust Gabriele Curci 16 Apr 2017
NIA / NASA LaRC Radiative effects of aerosols versus clouds on key tropospheric oxidants Hongyu Liu 5 May 2015
NIA / NASA LaRC Lifecycle, transport, and distribution of tropospheric aerosols over the western North Atlantic Hongyu Liu 5 May 2015
UCLA Improve black carbon simulations in GEOS-Chem; BC aging microphysics; BC-snow interaction; BC radiative properties; Cenlin He 8 May 2015
UCLA Black carbon emissions, simulations and its radiative effects over the Arctic Ling Qi 8 May 2015
UCLA Improve aerosol wet scavenging and dry deposition in GEOS-Chem Ling Qi
Cenlin He
8 May 2015

Related Pages