Difference between revisions of "TransportTracers simulation"

From Geos-chem
Jump to: navigation, search
(Sinks)
 
(24 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
__FORCETOC__
 
__FORCETOC__
 
'''''[[Tagged O3 simulation|Previous]] | [[Guide to GEOS-Chem simulations|Next]] | [[Guide to GEOS-Chem simulations]]'''''
 
'''''[[Tagged O3 simulation|Previous]] | [[Guide to GEOS-Chem simulations|Next]] | [[Guide to GEOS-Chem simulations]]'''''
#[[Simulations overview]]
+
#[[GEOS-Chem chemistry mechanisms|Simulations using KPP-built mechanisms]]
#[[GEOS-Chem chemistry mechanisms|Mechanisms for full-chemistry simulations]] (e.g. Standard, Tropchem, etc.)
+
 
#[[Aerosol-only simulation]]
 
#[[Aerosol-only simulation]]
 
#[[CH4 simulation]]
 
#[[CH4 simulation]]
Line 13: Line 12:
  
  
This page contains information about the Radon-Lead-Beryllium (and optional passive species) simulation in GEOS-Chem.
+
This page contains information about the TransportTracers (formerly Rn-Pb-Be) simulation in GEOS-Chem.
  
 
== Overview ==
 
== Overview ==
  
The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model. The current simulation follows [http://acmg.seas.harvard.edu/publications/2001/liu2001.pdf Liu et al (2001)].   
+
The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model. The current simulation follows [http://acmg.seas.harvard.edu/publications/2001/liu2001.pdf Liu et al (2001)].   
  
The standard Rn-Pb-Be simulation uses the following tracers:
+
In [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]] the Rn-Pb-Be simulation was extended to include additional passive species for benchmarking purposes and for diagnosing transport in GEOS-Chem. At this time the simulation was renamed to the '''''TransportTracer simulation'''''.
  
#Rn<sup>222</sup>, which is emitted naturally from soils
+
In [[GEOS-Chem 14.2.0]] the TransportTracers simulation was further modified so that species names and definitions are now consistent with GMAO's tracer gridded component (aka TR_GridComp). This will facilitate comparison of transport within GEOS-Chem, GCHP, and GEOS.
#Pb<sup>210</sup>, which is the primary decay product of Rn<sup>222</sup>
+
#Be<sup>7</sup>, which is produced by cosmic rays in the stratosphere and upper atmosphere
+
#Be<sup>10</sup>, which is produced by cosmic rays in the stratosphere and upper atmosphere '''(introduced in [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]])'''
+
  
This simulation is most frequently used to validate the convection, advection, and wet scavenging processes in GEOS-Chem.
+
=== List of species ===
  
<span style="color:red">'''''Starting in [[GEOS-Chem v12#12.2.0|GEOS-Chem 12.2.0]], the Rn-Pb-Be simulation has been expanded to include several passive species in a new "Transport Tracer simulation." Please see [[Transport_Working_Group#Common_set_of_transport_tracers_in_GEOS-Chem_and_GEOS|this wiki post]] for more information.'''''</span>
+
The transport tracers are summarized below.
  
=== Zhang et al 2021 source ===
+
{| border=1 cellspacing=0 cellpadding=5
 
+
In [[GEOS-Chem 13.4.0]] and later versions, a new Radon source function based on [https://acp.copernicus.org/articles/21/1861/2021/ Zhang et al., 2021] was implemented.  This is now the default emission source.
+
 
+
=== Jacob et al 1997 source ===
+
 
+
This emissions source (based on Jacob et al., 1997) was replaced by the [[#Zhang et al 2021 source|Zhang et al., 2021 source]].  It still may be used as a research optioln.
+
 
+
{| border=1 cellspacing=0 cellpadding=5  
+
 
|-bgcolor="#CCCCCC"
 
|-bgcolor="#CCCCCC"
!width="100px"|Species
+
!width="100px"|Species name
!width="900px"|Chemical source
+
!width="200px"|Description
 +
!width="300px"|Source
 +
!width="300px"|Sink
 +
!width="300px"|Purpose
  
 
|-valign="top"
 
|-valign="top"
|<tt>Rn222</tt>
+
|Rn222
|The default source of Rn<sup>222</sup> follows Jacob et al. (1997):
+
|Radon-222 isotope
 
+
|
{| border=1 cellspacing=0 cellpadding=5
+
*Emitted naturally from soils based on [https://acp.copernicus.org/articles/21/1861/2021/ Zhang et al., 2021].
|-valign="top" bgcolor="#CCFFFF"
+
!width="100px"|Latitudes
+
!width="500px"|Rn<sup>222</sup> Emission
+
 
+
|-valign="top"
+
| 90&deg;N - 70&deg;N
+
 
|
 
|
*Everywhere: <tt>0.0 atoms/cm2/s</tt>
+
*Half-life of 3.83 days (Liu at al., 2001).
 +
**Decays into Pb<sup>210</sup> according to the exponential law:
 +
::<tt>EXP( -&Delta;T * 2.097d-6  )</tt>
 +
|Used to evaluate convection over land and strat-trop exchange
  
 
|-valign="top"
 
|-valign="top"
|70&deg;N - 60&deg;N
+
|Pb210
 +
|Lead-210 isotope
 
|
 
|
*Everywhere: <tt>0.005 atoms/cm2/s</tt>
+
*Radioactive decay from Rn<sup>222</sup> according to the exponential law:
*Reduce emissions by a factor of 3 where surface temperature < 0&deg; C
+
::<tt>EXP( -&Delta;T * 2.097d-6  )</tt>
 +
::Where &Delta;T is the emission timestep in seconds.
 +
|
 +
*Half-life of 22.3 years (Liu et al., 2001).
 +
**Decays according to the exponential law:
 +
::<tt>EXP( -&Delta;T * 9.725d-10 )</tt>
 +
*Wet deposition
 +
*Dry deposition
 +
|Used to evaluate wet scavenging and transport
  
 
|-valign="top"
 
|-valign="top"
|60&deg;N - 60&deg;S
+
|Pb210s
 +
|Lead-210 isotope stratospheric-source tracer
 
|
 
|
*Over land: <tt>1 atom/cm2/s</tt>
+
*Same as Pb210 (restricted to the stratosphere)
*Over oceans: <tt>0.005 atoms/cm2/s</tt>
+
*Reduce emissions by a factor of 3 where surface temperature < 0&deg; C
+
 
+
|-valign="top"
+
|60&deg;S - 70&deg;S
+
 
|
 
|
*Everywhere: <tt>0.005 atoms/cm2/s</tt>
+
*Same as Pb210
*Reduce emissions by a factor of 3 where surface temperature < 0&deg; C
+
|Used to evaluate strat-trop exchange
  
 
|-valign="top"
 
|-valign="top"
| 70&deg;S - 90&deg;S
+
|Be7
 +
|Beryllium-7 isotope
 
|
 
|
*Everywhere: <tt>0.0 atoms/cm2/s</tt>
+
*Produced by cosmic rays as described in [https://link.springer.com/chapter/10.1007/978-3-642-46079-1_7 Lal and B. Peters, 1967]
|}
+
*Plus the following modifications from Liu et al. (2001):
 
+
 
+
In [[GEOS-Chem 13.4.0]] and later versions, users will have the option of replacing the default Rn<sup>222</sup> emissions (described above) with emissions from Bo Zhang et al [2021] (DOI: [https://doi.org/10.5194/acp-21-1861-2021 10.5194/acp-21-1861-2021]).
+
 
+
|-valign="top"
+
|<tt>Pb210</tt>
+
|Radioactive decay from Rn<sup>222</sup> according to the exponential law:
+
*<tt>EXP( -&Delta;T * 2.097d-6  )</tt>
+
Where &Delta;T is the emission timestep in seconds.
+
 
+
|-valign="top"
+
|<tt>Be7</tt>
+
|The source of Be<sup>7</sup> is taken from the following reference:
+
*Lal, D., and B. Peters, ''Cosmic ray produced radioactivity on the Earth''. <u>Handbuch der Physik</u>, '''46'''/2, 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.
+
 
+
with the following modifications from Liu et al. (2001):
+
 
#Replace data at (0 hPa altitude, 70&deg;S latitude) following Koch (1996):
 
#Replace data at (0 hPa altitude, 70&deg;S latitude) following Koch (1996):
 
#*old value = <tt>3000 disintegrations/g air/s</tt>
 
#*old value = <tt>3000 disintegrations/g air/s</tt>
Line 102: Line 80:
 
#The original Lal & Peters data ended at 70&deg;S
 
#The original Lal & Peters data ended at 70&deg;S
 
#*Copy the data values at 70&deg;S to 80&deg;S and 90&deg;S at all levels
 
#*Copy the data values at 70&deg;S to 80&deg;S and 90&deg;S at all levels
 +
|
 +
*Half-life of 53.3 days (Liu et al., 2001).
 +
**Decays according to the exponential law:
 +
::<tt>EXP( -&Delta;T * 1.506d-7  )</tt>
 +
*Wet deposition
 +
*Dry deposition
 +
|Used to evaluate wet scavenging and strat-trop exchange
  
 
|-valign="top"
 
|-valign="top"
|<tt>Be10</tt>
+
|Be7s
|Be<sup>10</sup> has an identical source distribution as Be<sup>7</sup> following Koch and Rind (1998).
+
|Beryllium-7 isotope stratospheric source tracer
 
+
|
|}
+
*Same as Be7 (restricted to the stratosphere)
 
+
|
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 13:43, 20 September 2022 (UTC)
+
*Same as Be7
 
+
|Used to evaluate strat-trop exchange
=== Sinks ===
+
 
+
The table below shows the sinks for Rn<sup>222</sup>, Pb<sup>210</sup>, and Be<sup>7</sup>.  In the equations below, &Delta;T is the emission timestep in seconds.
+
 
+
{| border=1 cellspacing=0 cellpadding=5
+
|-bgcolor="#CCCCCC"
+
!width="100px"|Species
+
!width="525px"|Chemical sink
+
!width="100px"|Drydep sink?
+
!width="100px"|Wetdep sink?
+
  
 
|-valign="top"
 
|-valign="top"
|<tt>Rn222</tt>
+
|Be10
|Half-life of 3.83 days (Liu at al., 2001).
+
|Beryllium-10 isotope
Decays into Pb<sup>210</sup> according to the exponential law:  
+
|
*<tt>EXP( -&Delta;T * 2.097d-6 )</tt>
+
*Be<sup>10</sup> has an identical source distribution as Be<sup>7</sup> following Koch and Rind (1998).
|no
+
|
|no
+
*Half-life of 5.84e8 days (Koch and Rind, 1998).
 +
**Decays according to the exponential law:
 +
::<tt>EXP( -&Delta;T * 1.506d-7 )</tt>
 +
*Wet deposition
 +
*Dry deposition
 +
|Used to evaluate wet scavenging and strat-trop exchange
  
 
|-valign="top"
 
|-valign="top"
|<tt>Pb210</tt>
+
|Be10s
|Half-life of 22.3 years (Liu et al., 2001).
+
|Beryllium-10 isotope stratospheric source tracer
Decays according to the exponential law:
+
|
*<tt>EXP( -&Delta;T * 9.725d-10 )</tt>
+
*Same as Be10 (restricted to the stratosphere)
|yes
+
|
|yes
+
*Same as Be10
 +
|Used to evaluate strat-trop exchange
  
 
|-valign="top"
 
|-valign="top"
|<tt>Be7</tt>
+
|PassiveTracer
|Half-life of 53.3 days (Liu et al., 2001).
+
|Passive tracer with initial concentration of 100 ppb
Decays according to the exponential law:
+
|
*<tt>EXP( -&Delta;T * 1.506d-7  )</tt>
+
*None
|yes
+
|
|yes
+
*None
 +
|Used to evaluate mass conservation in transport
  
 
|-valign="top"
 
|-valign="top"
|<tt>Be7Strat</tt>
+
|SF6
|Half-life of 53.3 days (Liu et al., 2001).
+
|Sulfur hexafluoride
Decays according to the exponential law:
+
|
*<tt>EXP( -&Delta;T * 1.506d-7  )</tt>
+
*Anthropogenic emissions from EDGAR v4.2
|yes
+
|
|yes
+
*None
 +
|Used to evaluate inter-hemispheric transport of anthropogenic emissions
  
 
|-valign="top"
 
|-valign="top"
|<tt>Be10</tt>
+
|CH3I
|Half-life of 5.84e8 days (Koch and Rind, 1998).
+
|Methyl iodide
Decays according to the exponential law:
+
|
*<tt>EXP( -&Delta;T * 1.506d-7  )</tt>
+
*Emissions over the oceans of 1 molec/cm2/s
|yes
+
|
|yes
+
*5-day e-folding lifetime
 +
|Used to evaluate marine convection
  
 
|-valign="top"
 
|-valign="top"
|<tt>Be10Strat</tt>
+
|CO_25
|Half-life of 5.84e8 days (Koch and Rind, 1998).
+
|Anthropogenic CO 25-day tracer
Decays according to the exponential law:
+
|
*<tt>EXP( -&Delta;T * 1.506d-7  )</tt>
+
*Emissions from CEDS v2
|yes
+
|
|yes
+
*25-day e-folding lifetime
 
+
|
|}
+
 
+
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 13:46, 20 September 2022 (UTC)
+
 
+
== Non-local PBL mixing ==
+
 
+
Capability to use the [[Boundary_layer_mixing#VDIFF|non-local PBL mixing scheme]] was added in [[GEOS-Chem v9-02]]. Code updates were provided by [mailto:jlin5@pku.edu.cn Jintai Lin].
+
 
+
Karen Yu evaluated the non-local PBL mixing scheme in the Rn-Pb-Be simulation using [[GEOS-5]] and [[GEOS-FP]] met fields. Please see [http://wiki.seas.harvard.edu/geos-chem/images/RnPbBe_nonlocalPBL.pdf these plots] comparing the simulation with and without the non-local PBL mixing scheme.
+
 
+
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 16:43, 8 January 2016 (UTC)
+
 
+
== Vertical Grid ==
+
 
+
<span style="color:green">'''''This update was included in [[GEOS-Chem v11-02#v11-02e|v11-02e]] (approved 24 Mar 2018).'''''</span>
+
 
+
Starting in [[GEOS-Chem v11-02#v11-02e|GEOS-Chem v11-02e]] the default vertical grid used in Rn-Pb-Be simulations is the native [[GEOS-Chem_vertical_grids#72-layer_vertical_grid|72-level grid]] for GEOS-FP and MERRA-2.
+
 
+
'''''[[User:Lizzie_Lundgren|Lizzie Lundgren]] wrote:'''''
+
 
+
:The RnPbBe uses [[GEOS-Chem_vertical_grids#47-layer_reduced_vertical_grid|47 levels]] by default (<tt>NO_REDUCED=n</tt>) for GEOS-Chem Classic and this is what we benchmark. GCHP, however, only uses the full 72 level grid. I recall that using either option gives the same result. I therefore wonder if we could change the GEOS-Chem Classic default to be 72 levels, consistent with GCHP. I do not think this would be significantly more expensive computationally.
+
 
+
--[[User:Melissa Payer|Melissa Sulprizio]] ([[User talk:Melissa Payer|talk]]) 18:08, 16 March 2018 (UTC)
+
 
+
== Validation ==
+
 
+
The information was computed from 1-year Rn-Pb-Be benchmark simulations.
+
 
+
=== 1-year benchmark simulations ===
+
 
+
==== Benchmark overview ====
+
 
+
1-year Rn-Pb-Be benchmark simulations are completed at the request of the Transport Working Group or whenever an update is introduced into the code that will impact transport and/or wet deposition. Each of these benchmarks involve a 4-year spinup period, followed by the 1-year run used for evaluation.
+
 
+
==== Benchmark plots ====
+
 
+
{| border=1 cellspacing=0 cellpadding=5
+
|- bgcolor="#CCCCCC"
+
!width="100px"|Version
+
!width="900px"|Link
+
  
 
|-valign="top"
 
|-valign="top"
|'''[[GEOS-Chem_12#12.8.0|12.8.0]]<br>w/ GEOS-FP'''
+
|CO_50
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.8.0/</tt>
+
|Anthropogenic CO 50-day tracer
 +
|
 +
*Emissions from CEDS v2
 +
|
 +
*50-day e-folding lifetime
 +
|
  
 
|-valign="top"
 
|-valign="top"
|'''[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]<br>w/ GEOS-FP'''
+
|e90
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.2.0/TransportTracers/output/</tt>
+
|Constant burden 90-day tracer
 +
|
 +
*Emitted globally at the surface such that the mixing ratio is maintained at 100 ppbv
 +
|
 +
*90-day e-folding lifetime
 +
|
  
 
|-valign="top"
 
|-valign="top"
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]<br>w/ GEOS-FP''' (2016 met)
+
|e90_n
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run2/NLPBL/output/</tt>
+
|Constant burden Northern Hemisphere 90-day tracer
 +
|
 +
*Emitted at the surface such that the mixing ratio is maintained at 100 ppbv. Emissions source is restricted to 40N - 90N.
 +
|
 +
*90-day e-folding lifetime
 +
|
  
 
|-valign="top"
 
|-valign="top"
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]<br>w/ GEOS-FP''' (72 levels)
+
|e90_s
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run1/NLPBL/output/</tt>
+
|Constant burden Southern Hemisphere 90-day tracer
 +
|
 +
*Emitted at the surface such that the mixing ratio is maintained at 100 ppbv. Emissions source is restricted to 90S - 40S.
 +
|
 +
*90-day e-folding lifetime
 +
|
  
 
|-valign="top"
 
|-valign="top"
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]<br>w/ GEOS-FP''' (2013 met)
+
|aoa
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run0/NLPBL/output/</tt>
+
|Age of air uniform source tracer
 +
|
 +
*Increases by a value of 1 each emissions timestep
 +
|
 +
*Sink at the surface
 +
|Used for evaluating residual circulation and mixing
  
 
|-valign="top"
 
|-valign="top"
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]<br>w/ GEOS-FP'''
+
|aoa_bl
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02b/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
+
|Age of air uniform source tracer with sink restricted to the boundary layer
 +
|
 +
*Increases by a value of 1 each emissions timestep
 +
|
 +
*Sink in the boundary layer
 +
|Used for evaluating residual circulation and mixing
  
 
|-valign="top"
 
|-valign="top"
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]<br>w/ GEOS-FP'''
+
|aoa_nh
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01i/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
+
|Age of air uniform source tracer with sink restricted to a zone in the Northern Hemisphere
 +
|
 +
*Increases by a value of 1 each emissions timestep
 +
|
 +
*Sink at 30N - 50N
 +
|Used for evaluating residual circulation and mixing
  
 
|-valign="top"
 
|-valign="top"
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]<br>w/ GEOS-FP'''
+
|nh_5
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01h/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
+
|Northern Hemisphere 5-day tracer
 +
|
 +
*Constant source of 100 ppbv at latitudes 30N - 50N
 +
|
 +
*5-day e-folding lifetime
 +
|
  
 
|-valign="top"
 
|-valign="top"
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]<br>w/ MERRA-2'''
+
|nh_50
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/MERRA2/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
+
|Northern Hemisphere 50-day tracer
 +
|
 +
*Constant source of 100 ppbv at latitudes 30N - 50N
 +
|
 +
*50-day e-folding lifetime
 +
|
  
 
|-valign="top"
 
|-valign="top"
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]<br>w/ GEOS-FP'''
+
|st80_25
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/GEOSFP/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
+
|Stratospheric source 25-day tracer
 
+
|
|-valign="top"
+
*Constant source of 200 ppbv above 80 hPa
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]<br>w/ GEOS-FP'''
+
|
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01d/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
+
*25-day e-folding lifetime
 
+
|
|-valign="top"
+
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]<br>w/ GEOS-FP'''
+
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01b/RnPbBe/output/</tt>
+
 
+
|-valign="top"
+
|'''[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]<br>w/ GEOS-FP'''
+
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v10-01/v10-01-public-release/RnPbBe/output/</tt>
+
 
+
|-valign="top"
+
|'''[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]<br>w/ GEOS-FP'''
+
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geosfp/RnPbBe/output/pdf/</tt>
+
 
+
|-valign="top"
+
|'''[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]<br>w/ GEOS-5'''
+
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geos5/RnPbBe/output/pdf/</tt>
+
 
+
|-valign="top"
+
|'''[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]<br>w/ GEOS-5'''
+
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-01-03/v9-01-03e/geos5/2005/RnPbBe/output/pdf/</tt>
+
 
+
|-valign="top"
+
|'''[[GEOS-Chem v9-01-02|v9-01-02]]<br>w/ GEOS-5'''
+
|<tt>http://wiki.seas.harvard.edu/geos-chem/index.php/Rn-Pb-Be_simulation#Comparison_plots</tt>
+
  
 
|}
 
|}
 
==== Budget of Pb210 ====
 
 
In this table we plot the budgets of Pb<sup>210</sup> obtained from 1-year benchmark simulations at 4&deg; x 5&deg; resolution done with various GEOS-Chem versions. 
 
 
{| border=1 cellspacing=0 cellpadding=5
 
|- bgcolor="#CCCCCC"
 
!width="75px" rowspan="3"|Version
 
!width="75px" rowspan="3"|Met Field
 
!width="75px" rowspan="3"|Year
 
!width="100px" rowspan="3"|Tropospheric burden [g]
 
!width="100px" rowspan="3"|Tropospheric lifetime against deposition [days]
 
!width="150px" colspan="2"|Sources [g day -1]
 
!width="375px" colspan="5"|Sinks [g day-1]
 
 
|-bgcolor="#CCCCCC"
 
!width="75px" rowspan="2"|From Stratosphere
 
!width="75px" rowspan="2"|From Troposphere
 
!width="75px" rowspan="2"|Dry Deposition
 
!width="225px" colspan="3"|Wet Deposition
 
!width="75px" rowspan="2"|Radioactive decay
 
 
|-bgcolor="#CCCCCC"
 
!width="100px"|Total
 
!width="100px"|Stratiform
 
!width="100px"|Convective
 
 
|-valign="top"
 
|[[GEOS-Chem 12#12.8.0|12.8.0]]<br>(with [https://github.com/geoschem/geos-chem/pull/95 Luo2019] wetdep)
 
|[[GEOS-FP]] (72L)
 
|2016
 
|105.1827
 
|3.2461
 
|0.2690
 
|32.1142
 
|2.3068
 
|30.0303
 
|25.4236
 
|4.6067
 
|0.0088608
 
 
|-valign="top"
 
|[[GEOS-Chem 12#12.8.0|12.8.0]]
 
|[[GEOS-FP]] (72L)
 
|2016
 
|211.6465
 
|6.5363
 
|0.2690
 
|32.1142
 
|3.9521
 
|28.4142
 
|19.9437
 
|8.4705
 
|0.0178018
 
 
|-valign="top"
 
|[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]
 
|[[GEOS-FP]] (72L)
 
|2016
 
|218.330
 
|6.71344
 
|0.236801
 
|32.2602
 
|3.95678
 
|28.5218
 
|20.0439
 
|8.47787
 
|0.0183735
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]
 
|[[GEOS-FP]] (72L)
 
|'''2016'''
 
|217.941
 
|6.71192
 
|0.224000
 
|32.2206
 
|3.94971
 
|28.4770
 
|20.0147
 
|8.46232
 
|0.0183407
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]
 
|[[GEOS-FP]] '''(72L)'''
 
|2013
 
|229.338
 
|7.10583
 
|0.219856
 
|32.0661
 
|3.90212
 
|28.3646
 
|19.9166
 
|8.44793
 
|0.0192987
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]
 
|[[GEOS-FP]]
 
|2013
 
|229.338
 
|7.10583
 
|0.219864
 
|32.0661
 
|3.90212
 
|28.3646
 
|19.9166
 
|8.44793
 
|0.0192987
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]
 
|[[GEOS-FP]]
 
|2013
 
|229.061
 
|7.09725
 
|0.219669
 
|32.0661
 
|3.93661
 
|28.3299
 
|19.8931
 
|8.43679
 
|0.0192754
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]
 
|[[GEOS-FP]]
 
|2013
 
|229.335
 
|7.10581
 
|0.219894
 
|32.0656
 
|3.90206
 
|28.3642
 
|19.9163
 
|8.44786
 
|0.0192984
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]
 
|[[GEOS-FP]]
 
|2013
 
|205.551
 
|6.37603
 
|0.200768
 
|32.0656
 
|3.32588
 
|28.9232
 
|22.2968
 
|6.62642
 
|0.0173020
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 
|'''[[MERRA-2]]'''
 
|2013
 
|199.426
 
|6.20202
 
|0.237400
 
|31.9437
 
|3.26365
 
|28.9007
 
|21.7525
 
|7.14814
 
|0.0167875
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 
|[[GEOS-FP]]
 
|2013
 
|204.931
 
|6.37746
 
|0.225323
 
|31.9356
 
|3.32210
 
|28.8216
 
|22.2060
 
|6.61553
 
|0.0172499
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]
 
|[[GEOS-FP]]
 
|2013
 
|210.371
 
|6.54296
 
|0.225956
 
|31.9538
 
|3.41587
 
|28.7451
 
|21.9070
 
|6.83813
 
|0.0177696
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]
 
|[[GEOS-FP]]
 
|2013
 
|212.655
 
|6.60214
 
|0.228550
 
|31.9528
 
|3.49478
 
|28.6686
 
|22.0420
 
|6.62657
 
|0.0179612
 
 
|-valign="top"
 
|[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]
 
|[[GEOS-FP]]
 
|'''2013'''
 
|250.912
 
|7.77516
 
|0.0832825
 
|32.2152
 
|3.51910
 
|28.7582
 
|22.0207
 
|6.73749
 
|0.0211769
 
 
|-valign="top"
 
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 
|'''[[GEOS-FP]]'''
 
|2012/2013
 
|247.630
 
|7.71356
 
|0.143133
 
|31.9904
 
|3.15887
 
|28.9538
 
|22.5351
 
|6.41867
 
|0.0208565
 
 
|-valign="top"
 
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 
|[[GEOS-5]]
 
|'''2012/2013'''
 
|305.699
 
|9.25835
 
|0.419521
 
|32.6109
 
|3.42747
 
|29.5772
 
|20.2059
 
|9.37127
 
|0.0257354
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]
 
|[[GEOS-5]]
 
|2005
 
|314.790
 
|9.51050
 
|0.128670
 
|32.9831
 
|3.48612
 
|29.5991
 
|20.8285
 
|8.77061
 
|0.0265495
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-02|v9-01-02]]
 
|[[GEOS-5]]
 
|2005
 
|317.884
 
|9.60957
 
|0.121441
 
|32.9831
 
|3.49208
 
|29.5857
 
|19.5148
 
|10.0709
 
|0.0268078
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-01|v9-01-01]]
 
|[[GEOS-5]]
 
|2005
 
|316.253
 
|9.55568
 
|0.129852
 
|32.9831
 
|3.66397
 
|29.4223
 
|19.4090
 
|10.0134
 
|0.0251665
 
 
|-valign="top"
 
|[[GEOS-Chem v8-03-02|v8-03-02]]
 
|[[GEOS-5]]
 
|2005
 
|298.318
 
|9.01288
 
|0.129642
 
|32.9831
 
|3.21013
 
|29.8775
 
|21.3283
 
|8.54923
 
|0.0266710
 
 
|}
 
 
NOTES:
 
*'''Bolded''' text denotes change in meteorology product and/or meteorology year.
 
*The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by [mailto:hongyu.liu-1@nasa.gov Hongyu Liu])
 
*The benchmark simulations for [[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]] were done for June 2012&ndash;May 2013, with a 2-month spinup. This was due to data availability of the [[GEOS-FP]] met fields at the time of the simulation. (Completed by [mailto:kyu@seas.harvard.edu Karen Yu])
 
*The simulations for [[GEOS-Chem v10-01]] and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
 
*The simulations for [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]] and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
 
*'''''<span style="color:darkorange">Hongyu Liu and Bo Zhang are investigating the low Pb tropospheric lifetime against deposition observed in v11-01b using GEOS-FP. A quick fix was tested in v11-01d, but subsequently removed because of the high impact on aerosols. For more information, see [[Wet_deposition#Low_tropospheric_210Pb_lifetime_against_deposition_in_v11-01b|this discussion on the ''Wet deposition'' wiki page]].</span>
 
 
==== Budget of Be7 ====
 
 
In this table we plot the budgets of Be<sup>7</sup> obtained from 1-year benchmark simulations at 4&deg; x 5&deg; resolution done with various GEOS-Chem versions.
 
 
{| border=1 cellspacing=0 cellpadding=5
 
|- bgcolor="#CCCCCC"
 
!width="150px" rowspan="3"|Version
 
!width="75px" rowspan="3"|Met Field
 
!width="75px" rowspan="3"|Year
 
!width="100px" rowspan="3"|Tropospheric burden [g]
 
!width="100px" rowspan="3"|Tropospheric lifetime against deposition [days]
 
!width="150px" colspan="2"|Sources [g day -1]
 
!width="375px" colspan="5"|Sinks [g day-1]
 
 
|-bgcolor="#CCCCCC"
 
!width="75px" rowspan="2"|From Stratosphere
 
!width="75px" rowspan="2"|From Troposphere
 
!width="75px" rowspan="2"|Dry Deposition
 
!width="225px" colspan="3"|Wet Deposition
 
!width="75px" rowspan="2"|Radioactive decay
 
 
|-bgcolor="#CCCCCC"
 
!width="75px"|Total
 
!width="75px"|Stratiform
 
!width="75px"|Convective
 
 
|-valign="top"
 
|[[GEOS-Chem 12#12.8.0|12.8.0]]<br>(with [https://github.com/geoschem/geos-chem/pull/95 Luo2019] wetdep)
 
|[[GEOS-FP]] (72L)
 
|2016
 
|1.1882
 
|9.5228
 
|0.2882
 
|0.1149
 
|0.0052
 
|0.1188
 
|0.1029
 
|0.0159
 
|0.0154770
 
 
|-valign="top"
 
|[[GEOS-Chem 12#12.8.0|12.8.0]]
 
|[[GEOS-FP]] (72L)
 
|2016
 
|2.8927
 
|20.5842
 
|0.2882
 
|0.1149
 
|0.0095
 
|0.1305
 
|0.1047
 
|0.0258
 
|0.0376572
 
 
|-valign="top"
 
|[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]
 
|[[GEOS-FP]] (72L)
 
|2016
 
|3.55540
 
|24.5959
 
|0.0541444
 
|0.136303
 
|0.00952537
 
|0.134645
 
|0.108871
 
|0.0257736
 
|0.0462768
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]
 
|[[GEOS-FP]] (72L)
 
|'''2016'''
 
|3.56036
 
|24.6000
 
|0.0543652
 
|0.136303
 
|0.00955045
 
|0.134776
 
|0.108970
 
|0.0258063
 
|0.0463413
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]
 
|[[GEOS-FP]] '''(72L)'''
 
|2013
 
|3.50286
 
|24.9516
 
|0.0529614
 
|0.132687
 
|0.0102709
 
|0.129784
 
|0.103733
 
|0.0260514
 
|0.0455928
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]
 
|[[GEOS-FP]]
 
|2013
 
|3.51047
 
|24.9816
 
|0.0531919
 
|0.132687
 
|0.0102796
 
|0.129907
 
|0.103831
 
|0.0260759
 
|0.0456918
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]
 
|[[GEOS-FP]]
 
|2013
 
|3.51002
 
|24.9773
 
|0.0531920
 
|0.132688
 
|0.0103364
 
|0.129856
 
|0.103796
 
|0.0260605
 
|0.0456861
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]
 
|[[GEOS-FP]]
 
|2013
 
|3.51044
 
|24.9815
 
|0.0531920
 
|0.132685
 
|0.0102795
 
|0.129907
 
|0.103831
 
|0.0260760
 
|0.0456914
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]
 
|[[GEOS-FP]]
 
|2013
 
|3.27337
 
|22.7988
 
|0.0531059
 
|0.132685
 
|0.00626941
 
|0.136914
 
|0.124153
 
|0.0127610
 
|0.0426082
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 
|'''[[MERRA-2]]'''
 
|2013
 
|3.12435
 
|21.2728
 
|0.0538848
 
|0.133202
 
|0.00650753
 
|0.139910
 
|0.124784
 
|0.0151255
 
|0.0406699
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 
|[[GEOS-FP]]
 
|2013
 
|3.27720
 
|22.8066
 
|0.0531204
 
|0.132842
 
|0.00628201
 
|0.137021
 
|0.124239
 
|0.0127822
 
|0.0426591
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]
 
|[[GEOS-FP]]
 
|2013
 
|3.32564
 
|23.2523
 
|0.0530363
 
|0.132914
 
|0.00664940
 
|0.135989
 
|0.122347
 
|0.0136424
 
|0.0433123
 
 
|-valign="top"
 
|[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]
 
|[[GEOS-FP]]
 
|2013
 
|3.33530
 
|23.3408
 
|0.0530463
 
|0.132914
 
|0.00698390
 
|0.135539
 
|0.1228950
 
|0.0126441
 
|0.0434378
 
 
|-valign="top"
 
|[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]
 
|[[GEOS-FP]]
 
|'''2013'''
 
|3.98942
 
|30.1194
 
|0.0512072
 
|0.132977
 
|0.00794288
 
|0.124298
 
|0.1101450
 
|0.0141529
 
|0.0519433
 
 
|-valign="top"
 
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 
|'''[[GEOS-FP]]'''
 
|2012/2013
 
|3.41039
 
|25.9787
 
|0.0630964
 
|0.112349
 
|0.00782526
 
|0.123206
 
|0.1093560
 
|0.0138500
 
|0.0444134
 
 
|-valign="top"
 
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 
|[[GEOS-5]]
 
|'''2012/2013'''
 
|3.49564
 
|27.5376
 
|0.0674867
 
|0.104750
 
|0.00881422
 
|0.117906
 
|0.0844566
 
|0.0334494
 
|0.0455165
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]
 
|[[GEOS-5]]
 
|2005
 
|4.37787
 
|34.6750
 
|0.0504472
 
|0.132552
 
|0.00882144
 
|0.117156
 
|0.0858211
 
|0.0393817
 
|0.0570217
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-02|v9-01-02]]
 
|[[GEOS-5]]
 
|2005
 
|4.39653
 
|34.8814
 
|0.0504253
 
|0.132552
 
|0.00936374
 
|0.116350
 
|0.0769681
 
|0.0393817
 
|0.0572633
 
 
|-valign="top"
 
|[[GEOS-Chem v9-01-01|v9-01-01]]
 
|[[GEOS-5]]
 
|2005
 
|4.39407
 
|34.8514
 
|0.0504328
 
|0.132552
 
|0.00969345
 
|0.116060
 
|0.0767926
 
|0.0392671
 
|0.0572312
 
 
|-valign="top"
 
|[[GEOS-Chem v8-03-02|v8-03-02]]
 
|[[GEOS-5]]
 
|2005
 
|4.31961
 
|33.9930
 
|0.0504585
 
|0.132552
 
|0.00808056
 
|0.118666
 
|0.0846774
 
|0.0339885
 
|0.0562636
 
 
|}
 
 
NOTES:
 
*'''Bolded''' text denotes change in meteorology product and/or meteorology year.
 
*The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by [mailto:hongyu.liu-1@nasa.gov Hongyu Liu])
 
*The benchmark simulations for [[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]] were done for June 2012&ndash;May 2013, with a 2-month spinup. This was due to data availability of the [[GEOS-FP]] met fields at the time of the simulation. (Completed by [mailto:kyu@seas.harvard.edu Karen Yu])
 
*The simulations for [[GEOS-Chem v10-01]] and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GEOS-Chem Support Team]])
 
*The simulations for [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]] and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
 
 
=== Radon flux diagnostic ===
 
 
<span style="color:darkorange">'''''This update will be added in [[GEOS-Chem v11-03]].'''''</span>
 
 
'''''Daniel Jacob wrote:'''''
 
 
:I suggest adding to the Rn-Pb-Be benchmark simulation a Rn flux diagnostic for a box across the coastal eastern US made up of 2x2 gridboxes in the horizontal and extending up to 3 levels in the vertical. This would allow testing of the horizontal fluxes as well as the vertical fluxes from advection, convection, and PBL mixing.  Benchmark success would be measured by mass balance in that box and comparison to previous version. The first order of business will be to test whether we get a good Rn mass balance to test that the flux diagnostics (ND24, ND25, ND26) works.
 
 
--[[User:Melissa Payer|Melissa Sulprizio]] ([[User talk:Melissa Payer|talk]]) 21:39, 23 November 2016 (UTC)
 
  
 
== References ==
 
== References ==

Latest revision as of 17:18, 24 October 2023

Previous | Next | Guide to GEOS-Chem simulations

  1. Simulations using KPP-built mechanisms
  2. Aerosol-only simulation
  3. CH4 simulation
  4. CO2 simulation
  5. Hg simulation
  6. POPs simulation
  7. Tagged CO simulation
  8. Tagged O3 simulation
  9. TransportTracers simulation


This page contains information about the TransportTracers (formerly Rn-Pb-Be) simulation in GEOS-Chem.

Overview

The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model. The current simulation follows Liu et al (2001).

In GEOS-Chem 12.2.0 the Rn-Pb-Be simulation was extended to include additional passive species for benchmarking purposes and for diagnosing transport in GEOS-Chem. At this time the simulation was renamed to the TransportTracer simulation.

In GEOS-Chem 14.2.0 the TransportTracers simulation was further modified so that species names and definitions are now consistent with GMAO's tracer gridded component (aka TR_GridComp). This will facilitate comparison of transport within GEOS-Chem, GCHP, and GEOS.

List of species

The transport tracers are summarized below.

Species name Description Source Sink Purpose
Rn222 Radon-222 isotope
  • Half-life of 3.83 days (Liu at al., 2001).
    • Decays into Pb210 according to the exponential law:
EXP( -ΔT * 2.097d-6 )
Used to evaluate convection over land and strat-trop exchange
Pb210 Lead-210 isotope
  • Radioactive decay from Rn222 according to the exponential law:
EXP( -ΔT * 2.097d-6 )
Where ΔT is the emission timestep in seconds.
  • Half-life of 22.3 years (Liu et al., 2001).
    • Decays according to the exponential law:
EXP( -ΔT * 9.725d-10 )
  • Wet deposition
  • Dry deposition
Used to evaluate wet scavenging and transport
Pb210s Lead-210 isotope stratospheric-source tracer
  • Same as Pb210 (restricted to the stratosphere)
  • Same as Pb210
Used to evaluate strat-trop exchange
Be7 Beryllium-7 isotope
  • Produced by cosmic rays as described in Lal and B. Peters, 1967
  • Plus the following modifications from Liu et al. (2001):
  1. Replace data at (0 hPa altitude, 70°S latitude) following Koch (1996):
    • old value = 3000 disintegrations/g air/s
    • new value = 1900 disintegrations/g air/s
  2. The original Lal & Peters data ended at 70°S
    • Copy the data values at 70°S to 80°S and 90°S at all levels
  • Half-life of 53.3 days (Liu et al., 2001).
    • Decays according to the exponential law:
EXP( -ΔT * 1.506d-7 )
  • Wet deposition
  • Dry deposition
Used to evaluate wet scavenging and strat-trop exchange
Be7s Beryllium-7 isotope stratospheric source tracer
  • Same as Be7 (restricted to the stratosphere)
  • Same as Be7
Used to evaluate strat-trop exchange
Be10 Beryllium-10 isotope
  • Be10 has an identical source distribution as Be7 following Koch and Rind (1998).
  • Half-life of 5.84e8 days (Koch and Rind, 1998).
    • Decays according to the exponential law:
EXP( -ΔT * 1.506d-7 )
  • Wet deposition
  • Dry deposition
Used to evaluate wet scavenging and strat-trop exchange
Be10s Beryllium-10 isotope stratospheric source tracer
  • Same as Be10 (restricted to the stratosphere)
  • Same as Be10
Used to evaluate strat-trop exchange
PassiveTracer Passive tracer with initial concentration of 100 ppb
  • None
  • None
Used to evaluate mass conservation in transport
SF6 Sulfur hexafluoride
  • Anthropogenic emissions from EDGAR v4.2
  • None
Used to evaluate inter-hemispheric transport of anthropogenic emissions
CH3I Methyl iodide
  • Emissions over the oceans of 1 molec/cm2/s
  • 5-day e-folding lifetime
Used to evaluate marine convection
CO_25 Anthropogenic CO 25-day tracer
  • Emissions from CEDS v2
  • 25-day e-folding lifetime
CO_50 Anthropogenic CO 50-day tracer
  • Emissions from CEDS v2
  • 50-day e-folding lifetime
e90 Constant burden 90-day tracer
  • Emitted globally at the surface such that the mixing ratio is maintained at 100 ppbv
  • 90-day e-folding lifetime
e90_n Constant burden Northern Hemisphere 90-day tracer
  • Emitted at the surface such that the mixing ratio is maintained at 100 ppbv. Emissions source is restricted to 40N - 90N.
  • 90-day e-folding lifetime
e90_s Constant burden Southern Hemisphere 90-day tracer
  • Emitted at the surface such that the mixing ratio is maintained at 100 ppbv. Emissions source is restricted to 90S - 40S.
  • 90-day e-folding lifetime
aoa Age of air uniform source tracer
  • Increases by a value of 1 each emissions timestep
  • Sink at the surface
Used for evaluating residual circulation and mixing
aoa_bl Age of air uniform source tracer with sink restricted to the boundary layer
  • Increases by a value of 1 each emissions timestep
  • Sink in the boundary layer
Used for evaluating residual circulation and mixing
aoa_nh Age of air uniform source tracer with sink restricted to a zone in the Northern Hemisphere
  • Increases by a value of 1 each emissions timestep
  • Sink at 30N - 50N
Used for evaluating residual circulation and mixing
nh_5 Northern Hemisphere 5-day tracer
  • Constant source of 100 ppbv at latitudes 30N - 50N
  • 5-day e-folding lifetime
nh_50 Northern Hemisphere 50-day tracer
  • Constant source of 100 ppbv at latitudes 30N - 50N
  • 50-day e-folding lifetime
st80_25 Stratospheric source 25-day tracer
  • Constant source of 200 ppbv above 80 hPa
  • 25-day e-folding lifetime

References

  1. Liu, H., D. Jacob, I. Bey, and R.M. Yantosca, Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res, 106, D11, 12109-12128, 2001.
  2. Jacob et al., Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers, J. Geophys. Res, 102, 5953-5970, 1997.
  3. Koch, D.M., D.J. Jacob, and W.C. Graustein, Vertical transport of tropospheric aerosols as indicated by 7Be and 210Pb in a chemical tracer model, J. Geophys. Res, 101, D13, 18651-18666, 1996.
  4. Koch, D., and D. Rind, Beryllium 10/beryllium 7 as a tracer of stratospheric transport, J. Geophys. Res., 103, D4, 3907-3917, 1998.
  5. Lal, D., and B. Peters, Cosmic ray produced radioactivity on the Earth. Handbuch der Physik, 46/2, 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.



Previous | Next | Guide to GEOS-Chem simulations