Difference between revisions of "TransportTracers simulation"

From Geos-chem
Jump to: navigation, search
(Validation)
(253 intermediate revisions by 4 users not shown)
Line 1: Line 1:
This page contains information about the Radon-Lead-Beryllium simulation in GEOS-Chem.
+
__FORCETOC__
 +
'''''[[Tagged O3 simulation|Previous]] | [[Guide to GEOS-Chem simulations|Next]] | [[Guide to GEOS-Chem simulations]]'''''
 +
#[[GEOS-Chem chemistry mechanisms|Simulations using KPP-built mechanisms]]
 +
#[[Aerosol-only simulation]]
 +
#[[CH4 simulation]]
 +
#[[CO2 simulation]]
 +
#[[Mercury|Hg simulation]]
 +
#[[POPs simulation]]
 +
#[[Tagged CO simulation]]
 +
#[[Tagged O3 simulation]]
 +
#<span style="color:blue">'''TransportTracers simulation'''</span>
 +
 
 +
 
 +
This page contains information about the Radon-Lead-Beryllium (and optional passive species) simulation in GEOS-Chem.
  
 
== Overview ==
 
== Overview ==
  
The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model.  The current simulation follows ''Liu et al'' [2001].   
+
The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model.  The current simulation follows [http://acmg.seas.harvard.edu/publications/2001/liu2001.pdf Liu et al (2001)].   
  
 
The standard Rn-Pb-Be simulation uses the following tracers:
 
The standard Rn-Pb-Be simulation uses the following tracers:
Line 10: Line 23:
 
#Pb<sup>210</sup>, which is the primary decay product of Rn<sup>222</sup>
 
#Pb<sup>210</sup>, which is the primary decay product of Rn<sup>222</sup>
 
#Be<sup>7</sup>, which is produced by cosmic rays in the stratosphere and upper atmosphere
 
#Be<sup>7</sup>, which is produced by cosmic rays in the stratosphere and upper atmosphere
 +
#Be<sup>10</sup>, which is produced by cosmic rays in the stratosphere and upper atmosphere '''(introduced in [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]])'''
 +
#Plus several [[Transport_Working_Group#Transport_Tracers_simulation|passive species]] used to diagnose transport
  
This simulation is most frequently used to validate the convection and advection processes in GEOS-Chem.
+
This simulation is most frequently used to validate the convection, advection, and wet scavenging processes in GEOS-Chem.
  
<div style="color: #aa0000; background: #eeeeee;border: 3px solid red; padding: 1em; margin: auto; width: 75%; "> '''Note:''' The current version of the Rn-Pb-Be simulation (v9-01-02) is '''not''' compatible with non-local PBL mixing. You must use the TURBDAY PBL mixing scheme. (Helen Amos, 21 Nov 2011 9:02 PM EST)</div>
+
=== Zhang et al 2021 source of Rn222 ===
  
== Sources ==
+
In [[GEOS-Chem 13.4.0]] and later versions, a new Radon source function based on [https://acp.copernicus.org/articles/21/1861/2021/ Zhang et al., 2021] was implemented.  This is now the default emission source.
  
The source of #Rn<sup>222</sup> is determined as follows (cf. ''Jacob et al'' [1997]):
+
=== Jacob et al 1997 source of Rn222 ===
  
#Rn<sup>222</sup> emission poleward of 70 degrees = 0.0 [atoms/cm2/s]
+
The Rn222 emissions source based on Jacob et al., 1997 was replaced by the [[#Zhang et al 2021 source|Zhang et al., 2021 source]] (in  [[GEOS-Chem 13.4.0]]). It still may be used as a research option.
#For latitudes 70S-60S and 60N-70N (both land & ocean), Rn<sup>222</sup> emission = 0.005 [atoms/cm2/s]
+
#For latitudes between 60S and 60N:
+
#*Rn<sup>222</sup> over land = 1 [atoms/cm2/s] over land
+
#*Rn<sup>222</sup> over land = 0.005 [atoms/cm2/s] over oceans
+
#Where the surface temperature is below 0&deg; C, reduce Rn<sup>222</sup> emissions by a factor of 3.
+
  
The source of Be<sup>7</sup> is taken from ''Lal and Peters'' [1967].
+
{| border=1 cellspacing=0 cellpadding=5
 +
|-valign="top" bgcolor="#CCCCCC"
 +
!width="100px"|Latitudes
 +
!width="500px"|Rn<sup>222</sup> Emission
  
== Sinks ==
+
|-valign="top"
 +
| 90&deg;N - 70&deg;N
 +
|
 +
*Everywhere: <tt>0.0 atoms/cm2/s</tt>
  
Rn<sup>222</sup> decays into Pb<sup>210</sup> according to the exponential law: <tt>EXP( -&Delta;T * 2.097d-6  )</tt>
+
|-valign="top"
 +
|70&deg;N - 60&deg;N
 +
|
 +
*Everywhere: <tt>0.005 atoms/cm2/s</tt>
 +
*Reduce emissions by a factor of 3 where surface temperature < 0&deg; C
  
Pb<sup>210</sup> decays according to the exponential law: <tt>EXP( -&Delta;T * 9.725d-10 )</tt>
+
|-valign="top"
 +
|60&deg;N - 60&deg;S
 +
|
 +
*Over land: <tt>1 atom/cm2/s</tt>
 +
*Over oceans: <tt>0.005 atoms/cm2/s</tt>
 +
*Reduce emissions by a factor of 3 where surface temperature < 0&deg; C
  
Be<sup>7</sup> decays according to the exponential law: <tt>EXP( -&Delta;T * 1.506d-7  )</tt>
+
|-valign="top"
 +
|60&deg;S - 70&deg;S
 +
|
 +
*Everywhere: <tt>0.005 atoms/cm2/s</tt>
 +
*Reduce emissions by a factor of 3 where surface temperature < 0&deg; C
  
where -&Delta;T is the emission timestep in seconds.
+
|-valign="top"
 +
| 70&deg;S - 90&deg;S
 +
|
 +
*Everywhere: <tt>0.0 atoms/cm2/s</tt>
 +
|}
  
== Validation ==
+
=== Pb210, Be7, and Be10 sources ===
  
The following budget information were computed from recent 1-year Rn-Pb-Be benchmark simulations.
+
{| border=1 cellspacing=0 cellpadding=5
 +
|-bgcolor="#CCCCCC"
 +
!width="100px"|Species
 +
!width="500px"|Chemical source
  
=== Budget from v9-01-02 ===
+
|-valign="top"
 
+
|<tt>Pb210</tt>
The following table (prepared by Hongyu Liu) identifies the sources & sinks of 210Pb and 7Be, derived from a 1-year simulation (with 4 years of spinup) done with [[GEOS-Chem v9-01-02]].
+
|Radioactive decay from Rn<sup>222</sup> according to the exponential law:
 +
*<tt>EXP( -&Delta;T * 2.097d-)</tt>
 +
Where &Delta;T is the emission timestep in seconds.
  
                              210Pb        7Be
+
|-valign="top"
  Burden, g                  317.884      4.39653
+
|<tt>Be7</tt><br><tt>Be7Strat</tt>
  Residence time, days        9.60957      34.8814
+
|The source of Be<sup>7</sup> is taken from the following reference:
  Sources, g d-1             
+
*Lal, D., and B. Peters, ''Cosmic ray produced radioactivity on the Earth''. <u>Handbuch der Physik</u>, '''46'''/2, 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.
    from stratosphere        0.121441    0.0504253
+
    within troposphere        32.9831    0.132552
+
  Sinks, g d-1             
+
    dry deposition            3.49208  0.00936374
+
    wet deposition            29.5857    0.116350
+
      stratiform              19.5148    0.0769681
+
      convective              10.0709    0.0393817
+
    radioactive decay      0.0268078    0.0572633
+
  
=== Budget from v9-01-01 ===
+
with the following modifications from Liu et al. (2001):
 +
#Replace data at (0 hPa altitude, 70&deg;S latitude) following Koch (1996):
 +
#*old value = <tt>3000 disintegrations/g air/s</tt>
 +
#*new value = <tt>1900 disintegrations/g air/s</tt>
 +
#The original Lal & Peters data ended at 70&deg;S
 +
#*Copy the data values at 70&deg;S to 80&deg;S and 90&deg;S at all levels
  
The following table (prepared by Hongyu Liu) identifies the sources & sinks of 210Pb and 7Be, derived from a 1-year simulation (with 4 years of spinup) done with [[GEOS-Chem v9-01-01]].
+
|-valign="top"
 +
|<tt>Be10</tt><br><tt>Be10</tt>
 +
|Be<sup>10</sup> has an identical source distribution as Be<sup>7</sup> following Koch and Rind (1998).
  
                              210Pb        7Be
+
|}
  Burden, g                  316.253      4.39407
+
  Residence time, days        9.55568      34.8514
+
  Sources, g d-1             
+
    from stratosphere        0.129852    0.0504328
+
    within troposphere        32.9831    0.132552
+
  Sinks, g d-1               
+
    dry deposition            3.66397  0.00969345
+
    wet deposition            29.4223    0.116060
+
      stratiform              19.4090    0.0767926
+
      convective              10.0134    0.0392671
+
    radioactive decay      0.0266710    0.0572312
+
  
=== Budget from v8-03-02 ===
+
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 13:43, 20 September 2022 (UTC)
  
The following table (prepared by Hongyu Liu) identifies the sources & sinks of 210Pb and 7Be, derived from a 1-year simulation (with 4 years of spinup) done with [[GEOS-Chem v8-03-02]].
+
=== Sinks ===
  
                              210Pb        7Be
+
The table below shows the sinks for Rn<sup>222</sup>, Pb<sup>210</sup>, and Be<sup>7</sup>. In the equations below, &Delta;T is the emission timestep in seconds.
  Burden, g                  298.318      4.31961
+
  Residence time, days        9.01288      33.9930
+
  Sources, g d-1             
+
    from stratosphere        0.129642    0.0504585
+
    within troposphere        32.9831    0.132552
+
  Sinks, g d-1               
+
    dry deposition            3.21013  0.00808056
+
    wet deposition            29.8775    0.118666
+
      stratiform              21.3283    0.0846774
+
      convective              8.54923    0.0339885
+
    radioactive decay      0.0251665    0.0562636
+
  
--[[User:Bmy|Bob Y.]] 10:48, 28 November 2011 (EST)
+
{| border=1 cellspacing=0 cellpadding=5
 +
|-bgcolor="#CCCCCC"
 +
!width="100px"|Species
 +
!width="400px"|Chemical sink
 +
!width="50px"|Drydep?
 +
!width="50px"|Wetdep?
  
== References ==
+
|-valign="top"
 +
|<tt>Rn222</tt>
 +
|Half-life of 3.83 days (Liu at al., 2001).
 +
Decays into Pb<sup>210</sup> according to the exponential law:
 +
*<tt>EXP( -&Delta;T * 2.097d-6  )</tt>
 +
|no
 +
|no
  
#Liu, H., D. Jacob, I. Bey, and R.M. Yantosca, ''Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields'', <u>J. Geophys. Res</u>, '''106''', D11, 12,109-12,128, 2001.
+
|-valign="top"
#Jacob et al., ''Evaluation and intercomparison of global atmospheric transport models using Rn-222 and other short-lived tracers'', <u>J. Geophys. Res</u>, '''102''', 5953-5970, 1997.
+
|<tt>Pb210</tt>
#Koch, D. <u>J. Geophys. Res</u>, '''101''', D13, 18651, 1996.
+
|Half-life of 22.3 years (Liu et al., 2001).
#Lal, D., and B. Peters, ''Cosmic ray produced radioactivity on the Earth''. <u>Handbuch der Physik</u>, '''46/2''', 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.
+
Decays according to the exponential law:
 +
*<tt>EXP( -&Delta;T * 9.725d-10 )</tt>
 +
|yes
 +
|yes
  
== Previous issues that are now resolved ==
+
|-valign="top"
 +
|<tt>Be7</tt><br><tt>Be7Strat</tt>
 +
|Half-life of 53.3 days (Liu et al., 2001).
 +
Decays according to the exponential law:
 +
*<tt>EXP( -&Delta;T * 1.506d-7  )</tt>
 +
|yes
 +
|yes
  
=== Incorrect Rn values caused by bug in convection_mod.f ===
+
|-valign="top"
 +
|<tt>Be10</tt><br><tt>Be10Strat</tt>
 +
|Half-life of 5.84e8 days (Koch and Rind, 1998).
 +
Decays according to the exponential law:
 +
*<tt>EXP( -&Delta;T * 1.506d-7  )</tt>
 +
|yes
 +
|yes
  
[[GEOS-Chem_v8-03-02#TINY_parameter_in_convection_mod.f|The bug in convection_mod.f described here]] can cause incorrect values of Rn in [[GEOS-Chem v8-03-01]] and prior versions.  This was fixed in [[GEOS-Chem v8-03-02]].
+
|}
  
--[[User:Bmy|Bob Y.]] 16:17, 19 May 2011 (EDT)
+
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 13:46, 20 September 2022 (UTC)
  
=== Bug for ND44 diagnostic in diag3.f ===
+
== Non-local PBL mixing ==
  
'''''NOTE: This bug was issued as a post-release patch ("v9-01-01-Patch-diags") in [[GEOS-Chem v9-01-01]] and was approved on 07 Jun 2011.'''''
+
Capability to use the [[Boundary_layer_mixing#VDIFF|non-local PBL mixing scheme]] was added in [[GEOS-Chem v9-02]]. Code updates were provided by [mailto:jlin5@pku.edu.cn Jintai Lin].
  
In the ND44 diagnostic section of <tt>diag3.f</tt>, the following lines are present twice (once for drydep fluxes and again for drydep velocities). This is a special-case for some tracers in the Caltech isoprene scheme:
+
Karen Yu evaluated the non-local PBL mixing scheme in the Rn-Pb-Be simulation using [[GEOS-5]] and [[GEOS-FP]] met fields. Please see [http://wiki.seas.harvard.edu/geos-chem/images/RnPbBe_nonlocalPBL.pdf these plots] comparing the simulation with and without the non-local PBL mixing scheme.
  
              ! Special case for tracers with several dry dep. tracers
+
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 16:43, 8 January 2016 (UTC)
              ! E.g. ISOPN: ISOPND and ISOPNB.
+
              ! We handle both tracers at the same time so we need to
+
              ! skip the second tracer. (ccc, 2/3/10)
+
              !IF ( MMB /= NN ) CYCLE
+
              IF ( MMB /= NN                .OR.
+
    &              DEPNAME( N ) == 'ISOPNB' .OR.
+
    &              DEPNAME( N ) == 'MVKN'      ) CYCLE
+
  
However, these lines will cause the drydep fluxes and velocities for Be7 to be skipped.  The fix is to bracket these lines with an IF statement so that they will only execute for a full-chemistry simulation:
+
== 1-year benchmark simulations ==
  
            IF ( ITS_A_FULLCHEM_SIM() ) THEN
+
=== Benchmark overview ===
              ! Special case for tracers with several dry dep. tracers
+
              ! E.g. ISOPN: ISOPND and ISOPNB.
+
              ! We handle both tracers at the same time so we need to
+
              ! skip the second tracer. (ccc, 2/3/10)
+
              !IF ( MMB /= NN ) CYCLE
+
              IF ( MMB /= NN                .OR.
+
    &              DEPNAME( N ) == 'ISOPNB' .OR.
+
    &              DEPNAME( N ) == 'MVKN'      ) CYCLE
+
            ENDIF
+
  
--[[User:Bmy|Bob Y.]] 11:57, 7 July 2011 (EDT)
+
1-year Rn-Pb-Be benchmark simulations are completed at the request of the Transport Working Group or whenever an update is introduced into the code that will impact transport and/or wet deposition. Each of these benchmarks involve a 4-year spinup period, followed by the 1-year run used for evaluation.
  
== Outstanding issues ==
+
=== Benchmark plots ===
  
=== Missing drydep diagnostics caused by tracer name error  ===
+
{| border=1 cellspacing=0 cellpadding=5
 +
|- bgcolor="#CCCCCC"
 +
!width="100px"|Version
 +
!width="900px"|Link
  
Please use the following tracer names in <tt>input.geos</tt> when setting up a Rn-Pb-Be simulation:
+
|-valign="top"
 +
|'''[[GEOS-Chem_12#12.8.0|12.8.0]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.8.0/</tt>
  
%%% TRACER MENU %%%    :
+
|-valign="top"
Type of simulation      : 1
+
|'''[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]<br>w/ GEOS-FP'''
Number of Tracers      : 3                     
+
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.2.0/TransportTracers/output/</tt>
Tracer Entries -------> : TR#  Name  g/mole  Tracer Members; () = emitted
+
Tracer #1              :  1  Rn    222.0
+
Tracer #2               :  2  Pb    210.0
+
Tracer #3              :   3  Be7      7.0
+
  
If you use alternate spellings for the Rn and Pb tracers, such as:
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]<br>w/ GEOS-FP''' (2016 met)
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run2/NLPBL/output/</tt>
  
Tracer #1              :  1  Rn222  222.0 
+
|-valign="top"
Tracer #2              :   2  Pb210  210.0
+
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]<br>w/ GEOS-FP''' (72 levels)
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run1/NLPBL/output/</tt>
  
Then this may cause the dry deposition fluxes and frequencies for Pb<sup>210</sup> not to be printed out.  
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]<br>w/ GEOS-FP''' (2013 met)
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run0/NLPBL/output/</tt>
  
A fix is forthcoming in [[GEOS-Chem v9-01-02]].
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02b/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
  
--[[User:Bmy|Bob Y.]] 11:57, 7 July 2011 (EDT)
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01i/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
  
=== Out-of-bounds errors in ND01, ND02 diagnostics ===
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01h/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
  
In <tt>RnPbBe_mod.F</tt>, the ND01 (Source of Rn, Pb, Be) and ND02 (Decay of Rn, Pb, Be) diagnostics had [[Common GEOS-Chem error messages#Array-out-of-bounds|array-out-of-bounds errors]] if you requested less than 47 levels. 
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]<br>w/ MERRA-2'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/MERRA2/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
  
For example, if you specified these settings in your <tt>input.geos</tt> file (assuming a GEOS-5 or MERRA simulation  w/ 47 levels):
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/GEOSFP/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
  
ND01: Rn/Pb/Be source  : 47  all
+
|-valign="top"
ND02: Rn/Pb/Be decay    : 47  all
+
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01d/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
  
then your run would work just fine.  However, if you tried this:
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01b/RnPbBe/output/</tt>
  
ND01: Rn/Pb/Be source  :  1  all
+
|-valign="top"
ND02: Rn/Pb/Be decay    :  1  all
+
|'''[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v10-01/v10-01-public-release/RnPbBe/output/</tt>
  
then your run would crash.  In some instances, the error masked itself as an I/O error (i.e. "file not found").  This is because an out-of-bounds was probably corrupting the variables that were used to check if all of the data had been read from a particular met field file.
+
|-valign="top"
 
+
|'''[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]<br>w/ GEOS-FP'''
To prevent this from happening, we now test whether the L index is smaller or equal to LD01 (the vertical extent of the AD01 array) or LD02 (the vertical extent of the AD02 array). We have now modified all of the IF statements where the ND01 or ND02 diagnostics are invoked.
+
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geosfp/RnPbBe/output/pdf/</tt>
  
For example, we took the existing block of code:
+
|-valign="top"
 +
|'''[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]<br>w/ GEOS-5'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geos5/RnPbBe/output/pdf/</tt>
  
      ! ND01 diag: 7Be emission [kg/s]
+
|-valign="top"
      IF ( ND01 > 0 ) THEN
+
|'''[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]<br>w/ GEOS-5'''
        AD01(I,J,L,3) = AD01(I,J,L,3) + ( ADD_Be / DTSRCE )
+
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-01-03/v9-01-03e/geos5/2005/RnPbBe/output/pdf/</tt>
      ENDIF
+
  
and add an additional test on L:
+
|-valign="top"
 +
|'''[[GEOS-Chem v9-01-02|v9-01-02]]<br>w/ GEOS-5'''
 +
|<tt>http://wiki.seas.harvard.edu/geos-chem/index.php/Rn-Pb-Be_simulation#Comparison_plots</tt>
  
      ! ND01 diag: 7Be emission [kg/s]
+
|}
      IF ( ND01 > 0 .and. L <= LD01 ) THEN
+
 
        AD01(I,J,L,3) = AD01(I,J,L,3) + ( ADD_Be / DTSRCE )
+
=== Budget of Pb210 ===
      ENDIF
+
 
 +
In this table we plot the budgets of Pb<sup>210</sup> obtained from 1-year benchmark simulations at 4&deg; x 5&deg; resolution done with various GEOS-Chem versions. 
 +
 
 +
{| border=1 cellspacing=0 cellpadding=5
 +
|- bgcolor="#CCCCCC"
 +
!width="75px" rowspan="3"|Version
 +
!width="75px" rowspan="3"|Met Field
 +
!width="75px" rowspan="3"|Year
 +
!width="100px" rowspan="3"|Tropospheric burden [g]
 +
!width="100px" rowspan="3"|Tropospheric lifetime against deposition [days]
 +
!width="150px" colspan="2"|Sources [g day -1]
 +
!width="375px" colspan="5"|Sinks [g day-1]
 +
 
 +
|-bgcolor="#CCCCCC"
 +
!width="75px" rowspan="2"|From Stratosphere
 +
!width="75px" rowspan="2"|From Troposphere
 +
!width="75px" rowspan="2"|Dry Deposition
 +
!width="225px" colspan="3"|Wet Deposition
 +
!width="75px" rowspan="2"|Radioactive decay
 +
 
 +
|-bgcolor="#CCCCCC"
 +
!width="100px"|Total
 +
!width="100px"|Stratiform
 +
!width="100px"|Convective
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem 12#12.8.0|12.8.0]]<br>(with [https://github.com/geoschem/geos-chem/pull/95 Luo2019] wetdep)
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|105.1827
 +
|3.2461
 +
|0.2690
 +
|32.1142
 +
|2.3068
 +
|30.0303
 +
|25.4236
 +
|4.6067
 +
|0.0088608
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem 12#12.8.0|12.8.0]]
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|211.6465
 +
|6.5363
 +
|0.2690
 +
|32.1142
 +
|3.9521
 +
|28.4142
 +
|19.9437
 +
|8.4705
 +
|0.0178018
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|218.330
 +
|6.71344
 +
|0.236801
 +
|32.2602
 +
|3.95678
 +
|28.5218
 +
|20.0439
 +
|8.47787
 +
|0.0183735
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]
 +
|[[GEOS-FP]] (72L)
 +
|'''2016'''
 +
|217.941
 +
|6.71192
 +
|0.224000
 +
|32.2206
 +
|3.94971
 +
|28.4770
 +
|20.0147
 +
|8.46232
 +
|0.0183407
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]
 +
|[[GEOS-FP]] '''(72L)'''
 +
|2013
 +
|229.338
 +
|7.10583
 +
|0.219856
 +
|32.0661
 +
|3.90212
 +
|28.3646
 +
|19.9166
 +
|8.44793
 +
|0.0192987
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|229.338
 +
|7.10583
 +
|0.219864
 +
|32.0661
 +
|3.90212
 +
|28.3646
 +
|19.9166
 +
|8.44793
 +
|0.0192987
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|229.061
 +
|7.09725
 +
|0.219669
 +
|32.0661
 +
|3.93661
 +
|28.3299
 +
|19.8931
 +
|8.43679
 +
|0.0192754
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|229.335
 +
|7.10581
 +
|0.219894
 +
|32.0656
 +
|3.90206
 +
|28.3642
 +
|19.9163
 +
|8.44786
 +
|0.0192984
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|205.551
 +
|6.37603
 +
|0.200768
 +
|32.0656
 +
|3.32588
 +
|28.9232
 +
|22.2968
 +
|6.62642
 +
|0.0173020
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 +
|'''[[MERRA-2]]'''
 +
|2013
 +
|199.426
 +
|6.20202
 +
|0.237400
 +
|31.9437
 +
|3.26365
 +
|28.9007
 +
|21.7525
 +
|7.14814
 +
|0.0167875
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|204.931
 +
|6.37746
 +
|0.225323
 +
|31.9356
 +
|3.32210
 +
|28.8216
 +
|22.2060
 +
|6.61553
 +
|0.0172499
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|210.371
 +
|6.54296
 +
|0.225956
 +
|31.9538
 +
|3.41587
 +
|28.7451
 +
|21.9070
 +
|6.83813
 +
|0.0177696
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|212.655
 +
|6.60214
 +
|0.228550
 +
|31.9528
 +
|3.49478
 +
|28.6686
 +
|22.0420
 +
|6.62657
 +
|0.0179612
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]
 +
|[[GEOS-FP]]
 +
|'''2013'''
 +
|250.912
 +
|7.77516
 +
|0.0832825
 +
|32.2152
 +
|3.51910
 +
|28.7582
 +
|22.0207
 +
|6.73749
 +
|0.0211769
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 +
|'''[[GEOS-FP]]'''
 +
|2012/2013
 +
|247.630
 +
|7.71356
 +
|0.143133
 +
|31.9904
 +
|3.15887
 +
|28.9538
 +
|22.5351
 +
|6.41867
 +
|0.0208565
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 +
|[[GEOS-5]]
 +
|'''2012/2013'''
 +
|305.699
 +
|9.25835
 +
|0.419521
 +
|32.6109
 +
|3.42747
 +
|29.5772
 +
|20.2059
 +
|9.37127
 +
|0.0257354
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]
 +
|[[GEOS-5]]
 +
|2005
 +
|314.790
 +
|9.51050
 +
|0.128670
 +
|32.9831
 +
|3.48612
 +
|29.5991
 +
|20.8285
 +
|8.77061
 +
|0.0265495
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-01-02|v9-01-02]]
 +
|[[GEOS-5]]
 +
|2005
 +
|317.884
 +
|9.60957
 +
|0.121441
 +
|32.9831
 +
|3.49208
 +
|29.5857
 +
|19.5148
 +
|10.0709
 +
|0.0268078
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-01-01|v9-01-01]]
 +
|[[GEOS-5]]
 +
|2005
 +
|316.253
 +
|9.55568
 +
|0.129852
 +
|32.9831
 +
|3.66397
 +
|29.4223
 +
|19.4090
 +
|10.0134
 +
|0.0251665
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v8-03-02|v8-03-02]]
 +
|[[GEOS-5]]
 +
|2005
 +
|298.318
 +
|9.01288
 +
|0.129642
 +
|32.9831
 +
|3.21013
 +
|29.8775
 +
|21.3283
 +
|8.54923
 +
|0.0266710
 +
 
 +
|}
 +
 
 +
NOTES:
 +
*'''Bolded''' text denotes change in meteorology product and/or meteorology year.
 +
*The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by [mailto:hongyu.liu-1@nasa.gov Hongyu Liu])
 +
*The benchmark simulations for [[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]] were done for June 2012&ndash;May 2013, with a 2-month spinup. This was due to data availability of the [[GEOS-FP]] met fields at the time of the simulation. (Completed by [mailto:kyu@seas.harvard.edu Karen Yu])
 +
*The simulations for [[GEOS-Chem v10-01]] and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
 +
*The simulations for [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]] and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
 +
*'''''<span style="color:darkorange">Hongyu Liu and Bo Zhang are investigating the low Pb tropospheric lifetime against deposition observed in v11-01b using GEOS-FP. A quick fix was tested in v11-01d, but subsequently removed because of the high impact on aerosols. For more information, see [[Wet_deposition#Low_tropospheric_210Pb_lifetime_against_deposition_in_v11-01b|this discussion on the ''Wet deposition'' wiki page]].</span>
 +
 
 +
=== Budget of Be7 ===
 +
 
 +
In this table we plot the budgets of Be<sup>7</sup> obtained from 1-year benchmark simulations at 4&deg; x 5&deg; resolution done with various GEOS-Chem versions.
 +
 
 +
{| border=1 cellspacing=0 cellpadding=5
 +
|- bgcolor="#CCCCCC"
 +
!width="150px" rowspan="3"|Version
 +
!width="75px" rowspan="3"|Met Field
 +
!width="75px" rowspan="3"|Year
 +
!width="100px" rowspan="3"|Tropospheric burden [g]
 +
!width="100px" rowspan="3"|Tropospheric lifetime against deposition [days]
 +
!width="150px" colspan="2"|Sources [g day -1]
 +
!width="375px" colspan="5"|Sinks [g day-1]
 +
 
 +
|-bgcolor="#CCCCCC"
 +
!width="75px" rowspan="2"|From Stratosphere
 +
!width="75px" rowspan="2"|From Troposphere
 +
!width="75px" rowspan="2"|Dry Deposition
 +
!width="225px" colspan="3"|Wet Deposition
 +
!width="75px" rowspan="2"|Radioactive decay
 +
 
 +
|-bgcolor="#CCCCCC"
 +
!width="75px"|Total
 +
!width="75px"|Stratiform
 +
!width="75px"|Convective
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem 12#12.8.0|12.8.0]]<br>(with [https://github.com/geoschem/geos-chem/pull/95 Luo2019] wetdep)
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|1.1882
 +
|9.5228
 +
|0.2882
 +
|0.1149
 +
|0.0052
 +
|0.1188
 +
|0.1029
 +
|0.0159
 +
|0.0154770
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem 12#12.8.0|12.8.0]]
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|2.8927
 +
|20.5842
 +
|0.2882
 +
|0.1149
 +
|0.0095
 +
|0.1305
 +
|0.1047
 +
|0.0258
 +
|0.0376572
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|3.55540
 +
|24.5959
 +
|0.0541444
 +
|0.136303
 +
|0.00952537
 +
|0.134645
 +
|0.108871
 +
|0.0257736
 +
|0.0462768
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]
 +
|[[GEOS-FP]] (72L)
 +
|'''2016'''
 +
|3.56036
 +
|24.6000
 +
|0.0543652
 +
|0.136303
 +
|0.00955045
 +
|0.134776
 +
|0.108970
 +
|0.0258063
 +
|0.0463413
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]
 +
|[[GEOS-FP]] '''(72L)'''
 +
|2013
 +
|3.50286
 +
|24.9516
 +
|0.0529614
 +
|0.132687
 +
|0.0102709
 +
|0.129784
 +
|0.103733
 +
|0.0260514
 +
|0.0455928
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.51047
 +
|24.9816
 +
|0.0531919
 +
|0.132687
 +
|0.0102796
 +
|0.129907
 +
|0.103831
 +
|0.0260759
 +
|0.0456918
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.51002
 +
|24.9773
 +
|0.0531920
 +
|0.132688
 +
|0.0103364
 +
|0.129856
 +
|0.103796
 +
|0.0260605
 +
|0.0456861
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.51044
 +
|24.9815
 +
|0.0531920
 +
|0.132685
 +
|0.0102795
 +
|0.129907
 +
|0.103831
 +
|0.0260760
 +
|0.0456914
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.27337
 +
|22.7988
 +
|0.0531059
 +
|0.132685
 +
|0.00626941
 +
|0.136914
 +
|0.124153
 +
|0.0127610
 +
|0.0426082
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 +
|'''[[MERRA-2]]'''
 +
|2013
 +
|3.12435
 +
|21.2728
 +
|0.0538848
 +
|0.133202
 +
|0.00650753
 +
|0.139910
 +
|0.124784
 +
|0.0151255
 +
|0.0406699
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.27720
 +
|22.8066
 +
|0.0531204
 +
|0.132842
 +
|0.00628201
 +
|0.137021
 +
|0.124239
 +
|0.0127822
 +
|0.0426591
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.32564
 +
|23.2523
 +
|0.0530363
 +
|0.132914
 +
|0.00664940
 +
|0.135989
 +
|0.122347
 +
|0.0136424
 +
|0.0433123
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.33530
 +
|23.3408
 +
|0.0530463
 +
|0.132914
 +
|0.00698390
 +
|0.135539
 +
|0.1228950
 +
|0.0126441
 +
|0.0434378
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]
 +
|[[GEOS-FP]]
 +
|'''2013'''
 +
|3.98942
 +
|30.1194
 +
|0.0512072
 +
|0.132977
 +
|0.00794288
 +
|0.124298
 +
|0.1101450
 +
|0.0141529
 +
|0.0519433
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 +
|'''[[GEOS-FP]]'''
 +
|2012/2013
 +
|3.41039
 +
|25.9787
 +
|0.0630964
 +
|0.112349
 +
|0.00782526
 +
|0.123206
 +
|0.1093560
 +
|0.0138500
 +
|0.0444134
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 +
|[[GEOS-5]]
 +
|'''2012/2013'''
 +
|3.49564
 +
|27.5376
 +
|0.0674867
 +
|0.104750
 +
|0.00881422
 +
|0.117906
 +
|0.0844566
 +
|0.0334494
 +
|0.0455165
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]
 +
|[[GEOS-5]]
 +
|2005
 +
|4.37787
 +
|34.6750
 +
|0.0504472
 +
|0.132552
 +
|0.00882144
 +
|0.117156
 +
|0.0858211
 +
|0.0393817
 +
|0.0570217
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-01-02|v9-01-02]]
 +
|[[GEOS-5]]
 +
|2005
 +
|4.39653
 +
|34.8814
 +
|0.0504253
 +
|0.132552
 +
|0.00936374
 +
|0.116350
 +
|0.0769681
 +
|0.0393817
 +
|0.0572633
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-01-01|v9-01-01]]
 +
|[[GEOS-5]]
 +
|2005
 +
|4.39407
 +
|34.8514
 +
|0.0504328
 +
|0.132552
 +
|0.00969345
 +
|0.116060
 +
|0.0767926
 +
|0.0392671
 +
|0.0572312
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v8-03-02|v8-03-02]]
 +
|[[GEOS-5]]
 +
|2005
 +
|4.31961
 +
|33.9930
 +
|0.0504585
 +
|0.132552
 +
|0.00808056
 +
|0.118666
 +
|0.0846774
 +
|0.0339885
 +
|0.0562636
 +
 
 +
|}
 +
 
 +
NOTES:
 +
*'''Bolded''' text denotes change in meteorology product and/or meteorology year.
 +
*The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by [mailto:hongyu.liu-1@nasa.gov Hongyu Liu])
 +
*The benchmark simulations for [[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]] were done for June 2012&ndash;May 2013, with a 2-month spinup. This was due to data availability of the [[GEOS-FP]] met fields at the time of the simulation. (Completed by [mailto:kyu@seas.harvard.edu Karen Yu])
 +
*The simulations for [[GEOS-Chem v10-01]] and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GEOS-Chem Support Team]])
 +
*The simulations for [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]] and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
 +
 
 +
== References ==
  
etc.
+
#Liu, H., D. Jacob, I. Bey, and R.M. Yantosca, ''Constraints from <sup>210</sup>Pb and <sup>7</sup>Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields'', <u>J. Geophys. Res</u>, '''106''', D11, 12109-12128, 2001.
 +
#Jacob et al., ''Evaluation and intercomparison of global atmospheric transport models using <sup>222</sup>Rn and other short-lived tracers'', <u>J. Geophys. Res</u>, '''102''', 5953-5970, 1997.
 +
#Koch, D.M., D.J. Jacob, and W.C. Graustein, ''Vertical transport of tropospheric aerosols as indicated by <sup>7</sup>Be and <sup>210</sup>Pb in a chemical tracer model'', <u>J. Geophys. Res</u>, '''101''', D13, 18651-18666, 1996.
 +
#Koch, D., and D. Rind, ''Beryllium 10/beryllium 7 as a tracer of stratospheric transport'', <u>J. Geophys. Res.</u>, '''103''', D4, 3907-3917, 1998.
 +
#Lal, D., and B. Peters, ''Cosmic ray produced radioactivity on the Earth''. <u>Handbuch der Physik</u>, '''46/2''', 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.
  
We will add this fix into [[GEOS-Chem v9-01-02]], since it does not affect the full-chemistry simulation.
 
  
--[[User:Bmy|Bob Y.]] 16:50, 8 November 2011 (EST)
+
----
 +
'''''[[Tagged O3 simulation|Previous]] | [[Guide to GEOS-Chem simulations|Next]] | [[Guide to GEOS-Chem simulations]]'''''

Revision as of 14:19, 20 September 2022

Previous | Next | Guide to GEOS-Chem simulations

  1. Simulations using KPP-built mechanisms
  2. Aerosol-only simulation
  3. CH4 simulation
  4. CO2 simulation
  5. Hg simulation
  6. POPs simulation
  7. Tagged CO simulation
  8. Tagged O3 simulation
  9. TransportTracers simulation


This page contains information about the Radon-Lead-Beryllium (and optional passive species) simulation in GEOS-Chem.

Overview

The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model. The current simulation follows Liu et al (2001).

The standard Rn-Pb-Be simulation uses the following tracers:

  1. Rn222, which is emitted naturally from soils
  2. Pb210, which is the primary decay product of Rn222
  3. Be7, which is produced by cosmic rays in the stratosphere and upper atmosphere
  4. Be10, which is produced by cosmic rays in the stratosphere and upper atmosphere (introduced in GEOS-Chem 12.2.0)
  5. Plus several passive species used to diagnose transport

This simulation is most frequently used to validate the convection, advection, and wet scavenging processes in GEOS-Chem.

Zhang et al 2021 source of Rn222

In GEOS-Chem 13.4.0 and later versions, a new Radon source function based on Zhang et al., 2021 was implemented. This is now the default emission source.

Jacob et al 1997 source of Rn222

The Rn222 emissions source based on Jacob et al., 1997 was replaced by the Zhang et al., 2021 source (in GEOS-Chem 13.4.0). It still may be used as a research option.

Latitudes Rn222 Emission
90°N - 70°N
  • Everywhere: 0.0 atoms/cm2/s
70°N - 60°N
  • Everywhere: 0.005 atoms/cm2/s
  • Reduce emissions by a factor of 3 where surface temperature < 0° C
60°N - 60°S
  • Over land: 1 atom/cm2/s
  • Over oceans: 0.005 atoms/cm2/s
  • Reduce emissions by a factor of 3 where surface temperature < 0° C
60°S - 70°S
  • Everywhere: 0.005 atoms/cm2/s
  • Reduce emissions by a factor of 3 where surface temperature < 0° C
70°S - 90°S
  • Everywhere: 0.0 atoms/cm2/s

Pb210, Be7, and Be10 sources

Species Chemical source
Pb210 Radioactive decay from Rn222 according to the exponential law:
  • EXP( -ΔT * 2.097d-6 )

Where ΔT is the emission timestep in seconds.

Be7
Be7Strat
The source of Be7 is taken from the following reference:
  • Lal, D., and B. Peters, Cosmic ray produced radioactivity on the Earth. Handbuch der Physik, 46/2, 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.

with the following modifications from Liu et al. (2001):

  1. Replace data at (0 hPa altitude, 70°S latitude) following Koch (1996):
    • old value = 3000 disintegrations/g air/s
    • new value = 1900 disintegrations/g air/s
  2. The original Lal & Peters data ended at 70°S
    • Copy the data values at 70°S to 80°S and 90°S at all levels
Be10
Be10
Be10 has an identical source distribution as Be7 following Koch and Rind (1998).

--Bob Yantosca (talk) 13:43, 20 September 2022 (UTC)

Sinks

The table below shows the sinks for Rn222, Pb210, and Be7. In the equations below, ΔT is the emission timestep in seconds.

Species Chemical sink Drydep? Wetdep?
Rn222 Half-life of 3.83 days (Liu at al., 2001).

Decays into Pb210 according to the exponential law:

  • EXP( -ΔT * 2.097d-6 )
no no
Pb210 Half-life of 22.3 years (Liu et al., 2001).

Decays according to the exponential law:

  • EXP( -ΔT * 9.725d-10 )
yes yes
Be7
Be7Strat
Half-life of 53.3 days (Liu et al., 2001).

Decays according to the exponential law:

  • EXP( -ΔT * 1.506d-7 )
yes yes
Be10
Be10Strat
Half-life of 5.84e8 days (Koch and Rind, 1998).

Decays according to the exponential law:

  • EXP( -ΔT * 1.506d-7 )
yes yes

--Bob Yantosca (talk) 13:46, 20 September 2022 (UTC)

Non-local PBL mixing

Capability to use the non-local PBL mixing scheme was added in GEOS-Chem v9-02. Code updates were provided by Jintai Lin.

Karen Yu evaluated the non-local PBL mixing scheme in the Rn-Pb-Be simulation using GEOS-5 and GEOS-FP met fields. Please see these plots comparing the simulation with and without the non-local PBL mixing scheme.

--Bob Yantosca (talk) 16:43, 8 January 2016 (UTC)

1-year benchmark simulations

Benchmark overview

1-year Rn-Pb-Be benchmark simulations are completed at the request of the Transport Working Group or whenever an update is introduced into the code that will impact transport and/or wet deposition. Each of these benchmarks involve a 4-year spinup period, followed by the 1-year run used for evaluation.

Benchmark plots

Version Link
12.8.0
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.8.0/
12.2.0
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.2.0/TransportTracers/output/
v11-02e
w/ GEOS-FP
(2016 met)
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run2/NLPBL/output/
v11-02e
w/ GEOS-FP
(72 levels)
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run1/NLPBL/output/
v11-02e
w/ GEOS-FP
(2013 met)
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run0/NLPBL/output/
v11-02b
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02b/RnPbBePasv/RnPbBePasv_VDIFF/output/
v11-01i
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01i/RnPbBePasv/RnPbBePasv_VDIFF/output/
v11-01h
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01h/RnPbBePasv/RnPbBePasv_VDIFF/output/
v11-01f
w/ MERRA-2
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/MERRA2/RnPbBe/RnPbBePasv_VDIFF/output/
v11-01f
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/GEOSFP/RnPbBe/RnPbBePasv_VDIFF/output/
v11-01d
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01d/RnPbBe/RnPbBePasv_VDIFF/output/
v11-01b
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01b/RnPbBe/output/
v10-01
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v10-01/v10-01-public-release/RnPbBe/output/
v9-02r
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geosfp/RnPbBe/output/pdf/
v9-02r
w/ GEOS-5
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geos5/RnPbBe/output/pdf/
v9-01-03e
w/ GEOS-5
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-01-03/v9-01-03e/geos5/2005/RnPbBe/output/pdf/
v9-01-02
w/ GEOS-5
http://wiki.seas.harvard.edu/geos-chem/index.php/Rn-Pb-Be_simulation#Comparison_plots

Budget of Pb210

In this table we plot the budgets of Pb210 obtained from 1-year benchmark simulations at 4° x 5° resolution done with various GEOS-Chem versions.

Version Met Field Year Tropospheric burden [g] Tropospheric lifetime against deposition [days] Sources [g day -1] Sinks [g day-1]
From Stratosphere From Troposphere Dry Deposition Wet Deposition Radioactive decay
Total Stratiform Convective
12.8.0
(with Luo2019 wetdep)
GEOS-FP (72L) 2016 105.1827 3.2461 0.2690 32.1142 2.3068 30.0303 25.4236 4.6067 0.0088608
12.8.0 GEOS-FP (72L) 2016 211.6465 6.5363 0.2690 32.1142 3.9521 28.4142 19.9437 8.4705 0.0178018
12.2.0 GEOS-FP (72L) 2016 218.330 6.71344 0.236801 32.2602 3.95678 28.5218 20.0439 8.47787 0.0183735
v11-02e GEOS-FP (72L) 2016 217.941 6.71192 0.224000 32.2206 3.94971 28.4770 20.0147 8.46232 0.0183407
v11-02e GEOS-FP (72L) 2013 229.338 7.10583 0.219856 32.0661 3.90212 28.3646 19.9166 8.44793 0.0192987
v11-02e GEOS-FP 2013 229.338 7.10583 0.219864 32.0661 3.90212 28.3646 19.9166 8.44793 0.0192987
v11-02b GEOS-FP 2013 229.061 7.09725 0.219669 32.0661 3.93661 28.3299 19.8931 8.43679 0.0192754
v11-01i GEOS-FP 2013 229.335 7.10581 0.219894 32.0656 3.90206 28.3642 19.9163 8.44786 0.0192984
v11-01h GEOS-FP 2013 205.551 6.37603 0.200768 32.0656 3.32588 28.9232 22.2968 6.62642 0.0173020
v11-01f MERRA-2 2013 199.426 6.20202 0.237400 31.9437 3.26365 28.9007 21.7525 7.14814 0.0167875
v11-01f GEOS-FP 2013 204.931 6.37746 0.225323 31.9356 3.32210 28.8216 22.2060 6.61553 0.0172499
v11-01d GEOS-FP 2013 210.371 6.54296 0.225956 31.9538 3.41587 28.7451 21.9070 6.83813 0.0177696
v11-01b GEOS-FP 2013 212.655 6.60214 0.228550 31.9528 3.49478 28.6686 22.0420 6.62657 0.0179612
v10-01 GEOS-FP 2013 250.912 7.77516 0.0832825 32.2152 3.51910 28.7582 22.0207 6.73749 0.0211769
v9-02r GEOS-FP 2012/2013 247.630 7.71356 0.143133 31.9904 3.15887 28.9538 22.5351 6.41867 0.0208565
v9-02r GEOS-5 2012/2013 305.699 9.25835 0.419521 32.6109 3.42747 29.5772 20.2059 9.37127 0.0257354
v9-01-03e GEOS-5 2005 314.790 9.51050 0.128670 32.9831 3.48612 29.5991 20.8285 8.77061 0.0265495
v9-01-02 GEOS-5 2005 317.884 9.60957 0.121441 32.9831 3.49208 29.5857 19.5148 10.0709 0.0268078
v9-01-01 GEOS-5 2005 316.253 9.55568 0.129852 32.9831 3.66397 29.4223 19.4090 10.0134 0.0251665
v8-03-02 GEOS-5 2005 298.318 9.01288 0.129642 32.9831 3.21013 29.8775 21.3283 8.54923 0.0266710

NOTES:

  • Bolded text denotes change in meteorology product and/or meteorology year.
  • The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by Hongyu Liu)
  • The benchmark simulations for v9-02r were done for June 2012–May 2013, with a 2-month spinup. This was due to data availability of the GEOS-FP met fields at the time of the simulation. (Completed by Karen Yu)
  • The simulations for GEOS-Chem v10-01 and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing (VDIFF) scheme. (Completed by the GEOS-Chem Support Team)
  • The simulations for GEOS-Chem 12.2.0 and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing (VDIFF) scheme. (Completed by the GEOS-Chem Support Team)
  • Hongyu Liu and Bo Zhang are investigating the low Pb tropospheric lifetime against deposition observed in v11-01b using GEOS-FP. A quick fix was tested in v11-01d, but subsequently removed because of the high impact on aerosols. For more information, see this discussion on the Wet deposition wiki page.

Budget of Be7

In this table we plot the budgets of Be7 obtained from 1-year benchmark simulations at 4° x 5° resolution done with various GEOS-Chem versions.

Version Met Field Year Tropospheric burden [g] Tropospheric lifetime against deposition [days] Sources [g day -1] Sinks [g day-1]
From Stratosphere From Troposphere Dry Deposition Wet Deposition Radioactive decay
Total Stratiform Convective
12.8.0
(with Luo2019 wetdep)
GEOS-FP (72L) 2016 1.1882 9.5228 0.2882 0.1149 0.0052 0.1188 0.1029 0.0159 0.0154770
12.8.0 GEOS-FP (72L) 2016 2.8927 20.5842 0.2882 0.1149 0.0095 0.1305 0.1047 0.0258 0.0376572
12.2.0 GEOS-FP (72L) 2016 3.55540 24.5959 0.0541444 0.136303 0.00952537 0.134645 0.108871 0.0257736 0.0462768
v11-02e GEOS-FP (72L) 2016 3.56036 24.6000 0.0543652 0.136303 0.00955045 0.134776 0.108970 0.0258063 0.0463413
v11-02e GEOS-FP (72L) 2013 3.50286 24.9516 0.0529614 0.132687 0.0102709 0.129784 0.103733 0.0260514 0.0455928
v11-02e GEOS-FP 2013 3.51047 24.9816 0.0531919 0.132687 0.0102796 0.129907 0.103831 0.0260759 0.0456918
v11-02b GEOS-FP 2013 3.51002 24.9773 0.0531920 0.132688 0.0103364 0.129856 0.103796 0.0260605 0.0456861
v11-01i GEOS-FP 2013 3.51044 24.9815 0.0531920 0.132685 0.0102795 0.129907 0.103831 0.0260760 0.0456914
v11-01h GEOS-FP 2013 3.27337 22.7988 0.0531059 0.132685 0.00626941 0.136914 0.124153 0.0127610 0.0426082
v11-01f MERRA-2 2013 3.12435 21.2728 0.0538848 0.133202 0.00650753 0.139910 0.124784 0.0151255 0.0406699
v11-01f GEOS-FP 2013 3.27720 22.8066 0.0531204 0.132842 0.00628201 0.137021 0.124239 0.0127822 0.0426591
v11-01d GEOS-FP 2013 3.32564 23.2523 0.0530363 0.132914 0.00664940 0.135989 0.122347 0.0136424 0.0433123
v11-01b GEOS-FP 2013 3.33530 23.3408 0.0530463 0.132914 0.00698390 0.135539 0.1228950 0.0126441 0.0434378
v10-01 GEOS-FP 2013 3.98942 30.1194 0.0512072 0.132977 0.00794288 0.124298 0.1101450 0.0141529 0.0519433
v9-02r GEOS-FP 2012/2013 3.41039 25.9787 0.0630964 0.112349 0.00782526 0.123206 0.1093560 0.0138500 0.0444134
v9-02r GEOS-5 2012/2013 3.49564 27.5376 0.0674867 0.104750 0.00881422 0.117906 0.0844566 0.0334494 0.0455165
v9-01-03e GEOS-5 2005 4.37787 34.6750 0.0504472 0.132552 0.00882144 0.117156 0.0858211 0.0393817 0.0570217
v9-01-02 GEOS-5 2005 4.39653 34.8814 0.0504253 0.132552 0.00936374 0.116350 0.0769681 0.0393817 0.0572633
v9-01-01 GEOS-5 2005 4.39407 34.8514 0.0504328 0.132552 0.00969345 0.116060 0.0767926 0.0392671 0.0572312
v8-03-02 GEOS-5 2005 4.31961 33.9930 0.0504585 0.132552 0.00808056 0.118666 0.0846774 0.0339885 0.0562636

NOTES:

  • Bolded text denotes change in meteorology product and/or meteorology year.
  • The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by Hongyu Liu)
  • The benchmark simulations for v9-02r were done for June 2012–May 2013, with a 2-month spinup. This was due to data availability of the GEOS-FP met fields at the time of the simulation. (Completed by Karen Yu)
  • The simulations for GEOS-Chem v10-01 and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing (VDIFF) scheme. (Completed by the GEOS-Chem Support Team)
  • The simulations for GEOS-Chem 12.2.0 and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing (VDIFF) scheme. (Completed by the GEOS-Chem Support Team)

References

  1. Liu, H., D. Jacob, I. Bey, and R.M. Yantosca, Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res, 106, D11, 12109-12128, 2001.
  2. Jacob et al., Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers, J. Geophys. Res, 102, 5953-5970, 1997.
  3. Koch, D.M., D.J. Jacob, and W.C. Graustein, Vertical transport of tropospheric aerosols as indicated by 7Be and 210Pb in a chemical tracer model, J. Geophys. Res, 101, D13, 18651-18666, 1996.
  4. Koch, D., and D. Rind, Beryllium 10/beryllium 7 as a tracer of stratospheric transport, J. Geophys. Res., 103, D4, 3907-3917, 1998.
  5. Lal, D., and B. Peters, Cosmic ray produced radioactivity on the Earth. Handbuch der Physik, 46/2, 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.



Previous | Next | Guide to GEOS-Chem simulations