Difference between revisions of "TransportTracers simulation"

From Geos-chem
Jump to: navigation, search
(Budget of Pb210 from 1-year benchmark simulations)
(198 intermediate revisions by 3 users not shown)
Line 1: Line 1:
This page contains information about the Radon-Lead-Beryllium simulation in GEOS-Chem.
+
__FORCETOC__
 +
'''''[[Tagged O3 simulation|Previous]] | [[Guide to GEOS-Chem simulations|Next]] | [[Guide to GEOS-Chem simulations]]'''''
 +
#[[GEOS-Chem chemistry mechanisms|Simulations using KPP-built mechanisms]]
 +
#[[Aerosol-only simulation]]
 +
#[[CH4 simulation]]
 +
#[[CO2 simulation]]
 +
#[[Mercury|Hg simulation]]
 +
#[[POPs simulation]]
 +
#[[Tagged CO simulation]]
 +
#[[Tagged O3 simulation]]
 +
#<span style="color:blue">'''TransportTracers simulation'''</span>
 +
 
 +
 
 +
This page contains information about the Radon-Lead-Beryllium (and optional passive species) simulation in GEOS-Chem.
  
 
== Overview ==
 
== Overview ==
  
The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model.  The current simulation follows ''Liu et al'' [2001].   
+
The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model.  The current simulation follows [http://acmg.seas.harvard.edu/publications/2001/liu2001.pdf Liu et al (2001)].   
  
 
The standard Rn-Pb-Be simulation uses the following tracers:
 
The standard Rn-Pb-Be simulation uses the following tracers:
Line 10: Line 23:
 
#Pb<sup>210</sup>, which is the primary decay product of Rn<sup>222</sup>
 
#Pb<sup>210</sup>, which is the primary decay product of Rn<sup>222</sup>
 
#Be<sup>7</sup>, which is produced by cosmic rays in the stratosphere and upper atmosphere
 
#Be<sup>7</sup>, which is produced by cosmic rays in the stratosphere and upper atmosphere
 +
#Be<sup>10</sup>, which is produced by cosmic rays in the stratosphere and upper atmosphere '''(introduced in [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]])'''
 +
#Plus several [[Transport_Working_Group#Transport_Tracers_simulation|passive species]] used to diagnose transport
  
This simulation is most frequently used to validate the convection and advection processes in GEOS-Chem.
+
This simulation is most frequently used to validate the convection, advection, and wet scavenging processes in GEOS-Chem.
  
<div style="color: #aa0000; background: #eeeeee;border: 3px solid red; padding: 1em; margin: auto; width: 90%; "> '''Note: Prior to [[GEOS-Chem v9-02]], the Rn-Pb-Be simulation was not compatible with the [[Boundary_layer_mixing#VDIFF|non-local PBL mixing scheme]].  If you are running the Rn-Pb-Be simulation with any version of GEOS-Chem prior to v9-02, you must select [[Boundary_layer_mixing#TURBDAY|the TURBDAY PBL mixing scheme]] for the Rn-Pb-Be simulation.  [[#Non-local PBL mixing|See below]] for more information. (Bob Yantosca, 07 Aug 2013)'''</div>
+
=== Zhang et al 2021 source of Rn222 ===
  
== Sources ==
+
In [[GEOS-Chem 13.4.0]] and later versions, a new Radon source function based on [https://acp.copernicus.org/articles/21/1861/2021/ Zhang et al., 2021] was implemented.  This is now the default emission source.
  
The source of #Rn<sup>222</sup> is determined as follows (cf. ''Jacob et al'' [1997]):
+
=== Jacob et al 1997 source of Rn222 ===
  
#Rn<sup>222</sup> emission poleward of 70 degrees = 0.0 [atoms/cm2/s]
+
The Rn222 emissions source based on Jacob et al., 1997 was replaced by the [[#Zhang et al 2021 source|Zhang et al., 2021 source]] (in  [[GEOS-Chem 13.4.0]]). It still may be used as a research option.
#For latitudes 70S-60S and 60N-70N (both land & ocean), Rn<sup>222</sup> emission = 0.005 [atoms/cm2/s]
+
#For latitudes between 60S and 60N:
+
#*Rn<sup>222</sup> over land = 1 [atoms/cm2/s] over land
+
#*Rn<sup>222</sup> over land = 0.005 [atoms/cm2/s] over oceans
+
#Where the surface temperature is below 0&deg; C, reduce Rn<sup>222</sup> emissions by a factor of 3.
+
  
The source of Be<sup>7</sup> is taken from ''Lal and Peters'' [1967].
+
{| border=1 cellspacing=0 cellpadding=5
 +
|-valign="top" bgcolor="#CCCCCC"
 +
!width="100px"|Latitudes
 +
!width="500px"|Rn<sup>222</sup> Emission
  
== Sinks ==
+
|-valign="top"
 +
| 90&deg;N - 70&deg;N
 +
|
 +
*Everywhere: <tt>0.0 atoms/cm2/s</tt>
  
Rn<sup>222</sup> decays into Pb<sup>210</sup> according to the exponential law: <tt>EXP( -&Delta;T * 2.097d-6  )</tt>
+
|-valign="top"
 +
|70&deg;N - 60&deg;N
 +
|
 +
*Everywhere: <tt>0.005 atoms/cm2/s</tt>
 +
*Reduce emissions by a factor of 3 where surface temperature < 0&deg; C
  
Pb<sup>210</sup> decays according to the exponential law: <tt>EXP( -&Delta;T * 9.725d-10 )</tt>
+
|-valign="top"
 +
|60&deg;N - 60&deg;S
 +
|
 +
*Over land: <tt>1 atom/cm2/s</tt>
 +
*Over oceans: <tt>0.005 atoms/cm2/s</tt>
 +
*Reduce emissions by a factor of 3 where surface temperature < 0&deg; C
  
Be<sup>7</sup> decays according to the exponential law: <tt>EXP( -&Delta;T * 1.506d-7  )</tt>
+
|-valign="top"
 +
|60&deg;S - 70&deg;S
 +
|
 +
*Everywhere: <tt>0.005 atoms/cm2/s</tt>
 +
*Reduce emissions by a factor of 3 where surface temperature < 0&deg; C
  
where -&Delta;T is the emission timestep in seconds.
+
|-valign="top"
 +
| 70&deg;S - 90&deg;S
 +
|
 +
*Everywhere: <tt>0.0 atoms/cm2/s</tt>
 +
|}
  
== Non-local PBL mixing ==
+
=== Pb210, Be7, and Be10 sources ===
  
=== GEOS-Chem v9-02 ===
+
{| border=1 cellspacing=0 cellpadding=5
 +
|-bgcolor="#CCCCCC"
 +
!width="100px"|Species
 +
!width="500px"|Chemical source
  
'''''This update was tested in the 1-month benchmark simulation [[GEOS-Chem_v9-02_benchmark_history#v9-02o|v9-02o]] and approved on 03 Sep 2013.'''''
+
|-valign="top"
 +
|<tt>Pb210</tt>
 +
|Radioactive decay from Rn<sup>222</sup> according to the exponential law:
 +
*<tt>EXP( -&Delta;T * 2.097d-6  )</tt>
 +
Where &Delta;T is the emission timestep in seconds.
  
Capability to use the [[Boundary_layer_mixing#VDIFF|non-local PBL mixing scheme]] will be added in [[GEOS-Chem v9-02]]. Code updates were provided by [mailto:jlin5@pku.edu.cn Jintai Lin].
+
|-valign="top"
 +
|<tt>Be7</tt><br><tt>Be7Strat</tt>
 +
|The source of Be<sup>7</sup> is taken from the following reference:
 +
*Lal, D., and B. Peters, ''Cosmic ray produced radioactivity on the Earth''. <u>Handbuch der Physik</u>, '''46'''/2, 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.
  
Karen Yu evaluated the non-local PBL mixing scheme in the Rn-Pb-Be simulation using [[GEOS-5]] and [[GEOS-FP]] met fields. Please see [http://wiki.seas.harvard.edu/geos-chem/images/RnPbBe_nonlocalPBL.pdf these plots] comparing the simulation with and without the non-local PBL mixing scheme.
+
with the following modifications from Liu et al. (2001):
 +
#Replace data at (0 hPa altitude, 70&deg;S latitude) following Koch (1996):
 +
#*old value = <tt>3000 disintegrations/g air/s</tt>
 +
#*new value = <tt>1900 disintegrations/g air/s</tt>
 +
#The original Lal & Peters data ended at 70&deg;S
 +
#*Copy the data values at 70&deg;S to 80&deg;S and 90&deg;S at all levels
  
=== GEOS-Chem v9-01-03 and earlier ===
+
|-valign="top"
 +
|<tt>Be10</tt><br><tt>Be10</tt>
 +
|Be<sup>10</sup> has an identical source distribution as Be<sup>7</sup> following Koch and Rind (1998).
  
Helen Amos discovered that the Rn-Pb-Be simulation was not compatible with non-local PBL mixing. In [[GEOS-Chem v9-01-03]] and earlier, You must use the [[Boundary_layer_mixing#TURBDAY|TURBDAY PBL mixing scheme]]. In the Chemistry Menu of input.geos:
+
|}
  
Turn on PBL Mixing?    : T
+
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 13:43, 20 September 2022 (UTC)
  => Use non-local PBL?  : F
+
  
--[[User:Melissa Payer|Melissa Sulprizio]] 17:56, 5 August 2013 (EDT)
+
=== Sinks ===
  
== Validation ==
+
The table below shows the sinks for Rn<sup>222</sup>, Pb<sup>210</sup>, and Be<sup>7</sup>.  In the equations below, &Delta;T is the emission timestep in seconds.
  
The information was computed from recent 1-year Rn-Pb-Be benchmark simulations.
+
{| border=1 cellspacing=0 cellpadding=5
 +
|-bgcolor="#CCCCCC"
 +
!width="100px"|Species
 +
!width="400px"|Chemical sink
 +
!width="50px"|Drydep?
 +
!width="50px"|Wetdep?
  
=== GEOS-5 vs. MERRA ===
+
|-valign="top"
 +
|<tt>Rn222</tt>
 +
|Half-life of 3.83 days (Liu at al., 2001).
 +
Decays into Pb<sup>210</sup> according to the exponential law:
 +
*<tt>EXP( -&Delta;T * 2.097d-6  )</tt>
 +
|no
 +
|no
  
As demonstrated by Liu et al. (2001), the Rn-Pb-Be simulation is a valuable tool for testing aerosol wet scavenging in the model. Here the Rn-Pb-Be simulation is used to benchmark the differences between several configurations for the current implementation of aerosol wet scavenging in v9-01-02.
+
|-valign="top"
 +
|<tt>Pb210</tt>
 +
|Half-life of 22.3 years (Liu et al., 2001).
 +
Decays according to the exponential law:
 +
*<tt>EXP( -&Delta;T * 9.725d-10 )</tt>
 +
|yes
 +
|yes
  
[mailto:hamos@fas.harvard.edu Helen Amos] ran 4 different 1-year Rn-Pb-Be simulations to look at how Pb<sup>210</sup> wet deposition is affected by [[GEOS-5]] and [[MERRA]] meteorology:
+
|-valign="top"
 +
|<tt>Be7</tt><br><tt>Be7Strat</tt>
 +
|Half-life of 53.3 days (Liu et al., 2001).
 +
Decays according to the exponential law:
 +
*<tt>EXP( -&Delta;T * 1.506d-7  )</tt>
 +
|yes
 +
|yes
  
<blockquote>
+
|-valign="top"
;'''Run 1: GEOS-5 std''': Simulation with the standard [[GEOS-Chem v9-01-02]] code, using with GEOS-5 met fields
+
|<tt>Be10</tt><br><tt>Be10Strat</tt>
;'''Run 2: MERRA std''': Simulation with the standard GEOS-Chem v9-01-02 code, using with MERRA met fields.  This simulation is intended to give the user a sense of the differences to expect between using MERRA and GEOS-5 meteorological fields.
+
|Half-life of 5.84e8 days (Koch and Rind, 1998).
;'''Run 3: MERRA met GEOS-5 wet dep''': This simulation was run using GEOS-Chem v9-01-02 with MERRA meteorological fields and the GEOS-5 wet deposition algorithms (in <tt>wetscav_mod.F</tt> and <tt>convection_mod.F</tt>). Additional fields were archived for MERRA that were not archived for GEOS-5. These additional fields for MERRA were used to update the wet scavenging algorithms (e.g. precipitation production in MAKE_QQ) in v9-01-01.  This simulation is intended to discriminate between the effects of (a) meteorological fields and (b) changes made to the wet deposition algorithms for MERRA.  
+
Decays according to the exponential law:
;'''Run 4: GEOS-5 w/ Wang et al. (2011) aerosol washout''': This simulation was run using v9-01-02 with GEOS-5 fields and aerosol washout updated according to Wang et al. (2011, ACPD). This simulation is intended as a preview for what to expect when the Wang et al. (2011) updates go into the standard code in v9-01-03.
+
*<tt>EXP( -&Delta;T * 1.506d-7  )</tt>
</blockquote>
+
|yes
 +
|yes
  
All simulations were performed using [[GEOS-Chem v9-01-02]] at 4&deg; x 5&deg; resolution for the year 2009.
+
|}
  
==== Comparison plots ====
+
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 13:46, 20 September 2022 (UTC)
  
Helen Amos also prepared the following comparison plots from these simulations.  All results shown are for [[GEOS-Chem v9-01-02]] at 4&deg; x 5&deg; resolution for the year 2009.  Monthly averages for January and July plotted separately.
+
== Non-local PBL mixing ==
  
{| border=1 cellspacing=0 cellpadding=5
+
Capability to use the [[Boundary_layer_mixing#VDIFF|non-local PBL mixing scheme]] was added in [[GEOS-Chem v9-02]]. Code updates were provided by [mailto:jlin5@pku.edu.cn Jintai Lin].
|-bgcolor="#cccccc"
+
!Comparison
+
!width="75px"|
+
!width="75px"|
+
|-
+
|GEOS-5 standard simulation (Run 1) vs. MERRA standard simulation (Run 2)
+
|[[Media:f1_f2_jan_small.png|January]]
+
|[[Media:f1_f2_jul_small.png|July]]
+
|-
+
|GEOS-5 standard simulation (Run 1) vs. MERRA simulation w/ GEOS-5 wetdep algorithms (Run 3)
+
|[[Media:f1_f3_jan_small.png|January]]
+
|[[Media:f1_f3_jul_small.png|July]]
+
|-
+
|GEOS-5 standard simulation (Run 1) vs. GEOS-5 simulation w/ Wang et al (2011) aerosol washout (Run 4)
+
|[[Media:f1_f4_jan_small.png|January]]
+
|[[Media:f1_f4_jul_small.png|July]]
+
|}
+
  
--[[User:Bmy|Bob Y.]] 13:37, 29 November 2011 (EST)
+
Karen Yu evaluated the non-local PBL mixing scheme in the Rn-Pb-Be simulation using [[GEOS-5]] and [[GEOS-FP]] met fields. Please see [http://wiki.seas.harvard.edu/geos-chem/images/RnPbBe_nonlocalPBL.pdf these plots] comparing the simulation with and without the non-local PBL mixing scheme.
  
==== Comparison budgets ====
+
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 16:43, 8 January 2016 (UTC)
  
Helen Amos also prepared the budgets from each of her 4 simulations.  These are compared to the original Rn-Pb-Be simulation as described in Liu et al (2001).
+
== 1-year benchmark simulations ==
 +
 
 +
=== Benchmark overview ===
 +
 
 +
1-year Rn-Pb-Be benchmark simulations are completed at the request of the Transport Working Group or whenever an update is introduced into the code that will impact transport and/or wet deposition. Each of these benchmarks involve a 4-year spinup period, followed by the 1-year run used for evaluation.
 +
 
 +
=== Benchmark plots ===
  
 
{| border=1 cellspacing=0 cellpadding=5  
 
{| border=1 cellspacing=0 cellpadding=5  
 
|- bgcolor="#CCCCCC"
 
|- bgcolor="#CCCCCC"
!width="200px"|Quantity
+
!width="100px"|Version
!Liu et al<br>(2001)
+
!width="900px"|Link
!(Run 1)<br>v9-01-02<br>GEOS-5 std
+
!(Run 2)<br>v9-01-02<br>MERRA std
+
!(Run 3)<br>v9-01-02<br>MERRA met<br>GEOS-5 wetdep
+
!(Run 4)<br>v9-01-02<br> GEOS-5 met<br>w/ Wang<br> aerosol washout**
+
|-
+
|Burden (g)
+
|299
+
|324.42
+
|299.74
+
|334.35
+
|339.11
+
|-
+
|Residence time (days)
+
|9
+
|9.80
+
|9.05
+
|9.93
+
|10.26
+
|-bgcolor="#eeddee"
+
|Sources (g day<sup>-1</sup>)
+
|
+
|
+
|
+
|
+
|
+
|-
+
|<div align="center">Strat + Trop</div>
+
|34
+
|33.11
+
|33.13
+
|33.68
+
|33.11
+
|-bgcolor="#eeddee"
+
|Sinks (g day<sup>-1</sup>)
+
|
+
|
+
|
+
|
+
|
+
|-
+
|<div align="center">Dry Deposition</div>
+
|3.8
+
|3.37
+
|3.37
+
|3.37
+
|3.68
+
  
|--
+
|-valign="top"
|<div align="center">Wet Deposition</div>
+
|'''[[GEOS-Chem_12#12.8.0|12.8.0]]<br>w/ GEOS-FP'''
|
+
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.8.0/</tt>
|
+
|
+
|
+
|
+
|-
+
|<div align="right">Stratiform</div>
+
|21
+
|18.57
+
|19.22
+
|18.93
+
|17.17
+
|-
+
|<div align="right">Convective</div>
+
|9.6
+
|11.14
+
|10.54
+
|11.37
+
|12.21
+
|-
+
|<div align="center">Radioactive decay</div>  
+
|0.03
+
|0.03
+
|0.03
+
|0.00
+
|0.03
+
|}
+
  
--[[User:Bmy|Bob Y.]] 13:57, 29 November 2011 (EST)
+
|-valign="top"
 +
|'''[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.2.0/TransportTracers/output/</tt>
  
--[[User:Helen Amos|Helen Amos]] 17:56, 12 September 2012 (EST), the labels for "convective" and "stratiform" were switched. Error corrected now. Thanks to Patrick Kim for pointing it out!
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]<br>w/ GEOS-FP''' (2016 met)
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run2/NLPBL/output/</tt>
  
<nowiki>**</nowiki>Note: In Run 4, a condensed water content value of 1.5d-6 cm<sup>3</sup> H20/cm<sup>3</sup> air was used in the calculation of F' in <tt>wetscav_mod.F</tt>. Qiaoqiao Wang updated this value to 1.0d-6 cm<sup>3</sup> H20/cm<sup>3</sup> as described in [http://acmg.seas.harvard.edu/publications/wang_qiaoqiao2011.pdf Wang et al. <nowiki>[2011]</nowiki>]. The use of 1.0d-6 increases the fraction of precipitating area, resulting in a slightly shorter lifetime of Pb210, as seen in the [[Rn-Pb-Be_simulation#Budget_of_Pb210_from_1-year_benchmark_simulations|budget of Pb210]] from the 1-year Rn-Pb-Be benchmark simulation for [[GEOS-Chem_v9-01-03_benchmark_history#v9-01-03e_2|v9-01-03e]].
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]<br>w/ GEOS-FP''' (72 levels)
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run1/NLPBL/output/</tt>
  
--[[User:Melissa Payer|Melissa Payer]] 17:34, 24 January 2012 (EST)
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]<br>w/ GEOS-FP''' (2013 met)
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run0/NLPBL/output/</tt>
  
=== Budget of Pb210 from 1-year benchmark simulations ===
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02b/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
  
In this table we plot the budgets of Pb<sup>210</sup> obtained from 1-year benchmark simulations at 4&deg; x 5&deg; resolution done with various GEOS-Chem versions. The simulations were done for year 2005, with a 4-year spinup. (Computed by [mailto:hongyu.liu-1@nasa.gov Hongyu Liu])
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01i/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
  
'''''NOTE: The benchmark simulations for [[GEOS-Chem v9-02 benchmark history#v9-02k|v9-02k]] were done for the month March 2013, with a 1-month spinup. This was due to data availability at the time of the simulation. (Computed by [mailto:kyu@seas.harvard.edu Karen Yu])'''''
+
|-valign="top"
 +
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01h/RnPbBePasv/RnPbBePasv_VDIFF/output/</tt>
 +
 
 +
|-valign="top"
 +
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]<br>w/ MERRA-2'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/MERRA2/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
 +
 
 +
|-valign="top"
 +
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/GEOSFP/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
 +
 
 +
|-valign="top"
 +
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01d/RnPbBe/RnPbBePasv_VDIFF/output/</tt>
 +
 
 +
|-valign="top"
 +
|'''[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01b/RnPbBe/output/</tt>
 +
 
 +
|-valign="top"
 +
|'''[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v10-01/v10-01-public-release/RnPbBe/output/</tt>
 +
 
 +
|-valign="top"
 +
|'''[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]<br>w/ GEOS-FP'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geosfp/RnPbBe/output/pdf/</tt>
 +
 
 +
|-valign="top"
 +
|'''[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]<br>w/ GEOS-5'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geos5/RnPbBe/output/pdf/</tt>
 +
 
 +
|-valign="top"
 +
|'''[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]<br>w/ GEOS-5'''
 +
|<tt>http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-01-03/v9-01-03e/geos5/2005/RnPbBe/output/pdf/</tt>
 +
 
 +
|-valign="top"
 +
|'''[[GEOS-Chem v9-01-02|v9-01-02]]<br>w/ GEOS-5'''
 +
|<tt>http://wiki.seas.harvard.edu/geos-chem/index.php/Rn-Pb-Be_simulation#Comparison_plots</tt>
 +
 
 +
|}
 +
 
 +
=== Budget of Pb210 ===
 +
 
 +
In this table we plot the budgets of Pb<sup>210</sup> obtained from 1-year benchmark simulations at 4&deg; x 5&deg; resolution done with various GEOS-Chem versions. 
  
 
{| border=1 cellspacing=0 cellpadding=5  
 
{| border=1 cellspacing=0 cellpadding=5  
 
|- bgcolor="#CCCCCC"
 
|- bgcolor="#CCCCCC"
!width="200px"|Quantity
+
!width="75px" rowspan="3"|Version
![[GEOS-Chem v8-03-02|v8-03-02]]<br>w/ GEOS-5
+
!width="75px" rowspan="3"|Met Field
![[GEOS-Chem v9-01-01|v9-01-01]]<br>w/ GEOS-5
+
!width="75px" rowspan="3"|Year
![[GEOS-Chem v9-01-02|v9-01-02]]<br>w/ GEOS-5
+
!width="100px" rowspan="3"|Tropospheric burden [g]
![[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]<br>w/ GEOS-5
+
!width="100px" rowspan="3"|Tropospheric lifetime against deposition [days]
![[GEOS-Chem v9-02 benchmark history#v9-02k|v9-02k]]<br>w/ GEOS-5
+
!width="150px" colspan="2"|Sources [g day -1]
![[GEOS-Chem v9-02 benchmark history#v9-02k|v9-02k]]<br>w/ GEOS-FP
+
!width="375px" colspan="5"|Sinks [g day-1]
|-
+
 
|Burden (g)
+
|-bgcolor="#CCCCCC"
|298.318
+
!width="75px" rowspan="2"|From Stratosphere
|316.253
+
!width="75px" rowspan="2"|From Troposphere
|317.884
+
!width="75px" rowspan="2"|Dry Deposition
 +
!width="225px" colspan="3"|Wet Deposition
 +
!width="75px" rowspan="2"|Radioactive decay
 +
 
 +
|-bgcolor="#CCCCCC"
 +
!width="100px"|Total
 +
!width="100px"|Stratiform
 +
!width="100px"|Convective
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem 12#12.8.0|12.8.0]]<br>(with [https://github.com/geoschem/geos-chem/pull/95 Luo2019] wetdep)
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|105.1827
 +
|3.2461
 +
|0.2690
 +
|32.1142
 +
|2.3068
 +
|30.0303
 +
|25.4236
 +
|4.6067
 +
|0.0088608
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem 12#12.8.0|12.8.0]]
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|211.6465
 +
|6.5363
 +
|0.2690
 +
|32.1142
 +
|3.9521
 +
|28.4142
 +
|19.9437
 +
|8.4705
 +
|0.0178018
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|218.330
 +
|6.71344
 +
|0.236801
 +
|32.2602
 +
|3.95678
 +
|28.5218
 +
|20.0439
 +
|8.47787
 +
|0.0183735
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]
 +
|[[GEOS-FP]] (72L)
 +
|'''2016'''
 +
|217.941
 +
|6.71192
 +
|0.224000
 +
|32.2206
 +
|3.94971
 +
|28.4770
 +
|20.0147
 +
|8.46232
 +
|0.0183407
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]
 +
|[[GEOS-FP]] '''(72L)'''
 +
|2013
 +
|229.338
 +
|7.10583
 +
|0.219856
 +
|32.0661
 +
|3.90212
 +
|28.3646
 +
|19.9166
 +
|8.44793
 +
|0.0192987
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|229.338
 +
|7.10583
 +
|0.219864
 +
|32.0661
 +
|3.90212
 +
|28.3646
 +
|19.9166
 +
|8.44793
 +
|0.0192987
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|229.061
 +
|7.09725
 +
|0.219669
 +
|32.0661
 +
|3.93661
 +
|28.3299
 +
|19.8931
 +
|8.43679
 +
|0.0192754
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|229.335
 +
|7.10581
 +
|0.219894
 +
|32.0656
 +
|3.90206
 +
|28.3642
 +
|19.9163
 +
|8.44786
 +
|0.0192984
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|205.551
 +
|6.37603
 +
|0.200768
 +
|32.0656
 +
|3.32588
 +
|28.9232
 +
|22.2968
 +
|6.62642
 +
|0.0173020
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 +
|'''[[MERRA-2]]'''
 +
|2013
 +
|199.426
 +
|6.20202
 +
|0.237400
 +
|31.9437
 +
|3.26365
 +
|28.9007
 +
|21.7525
 +
|7.14814
 +
|0.0167875
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|204.931
 +
|6.37746
 +
|0.225323
 +
|31.9356
 +
|3.32210
 +
|28.8216
 +
|22.2060
 +
|6.61553
 +
|0.0172499
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|210.371
 +
|6.54296
 +
|0.225956
 +
|31.9538
 +
|3.41587
 +
|28.7451
 +
|21.9070
 +
|6.83813
 +
|0.0177696
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|212.655
 +
|6.60214
 +
|0.228550
 +
|31.9528
 +
|3.49478
 +
|28.6686
 +
|22.0420
 +
|6.62657
 +
|0.0179612
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]
 +
|[[GEOS-FP]]
 +
|'''2013'''
 +
|250.912
 +
|7.77516
 +
|0.0832825
 +
|32.2152
 +
|3.51910
 +
|28.7582
 +
|22.0207
 +
|6.73749
 +
|0.0211769
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 +
|'''[[GEOS-FP]]'''
 +
|2012/2013
 +
|247.630
 +
|7.71356
 +
|0.143133
 +
|31.9904
 +
|3.15887
 +
|28.9538
 +
|22.5351
 +
|6.41867
 +
|0.0208565
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 +
|[[GEOS-5]]
 +
|'''2012/2013'''
 +
|305.699
 +
|9.25835
 +
|0.419521
 +
|32.6109
 +
|3.42747
 +
|29.5772
 +
|20.2059
 +
|9.37127
 +
|0.0257354
 +
 
 +
|-valign="top"
 +
|[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]
 +
|[[GEOS-5]]
 +
|2005
 
|314.790
 
|314.790
|309.351
 
|254.354
 
|-
 
|Residence time (days)
 
|9.01288
 
|9.55568
 
|9.60957
 
 
|9.51050
 
|9.51050
|10.2199
 
|8.61912
 
|-bgcolor="#eeddee"
 
|Sources (g day<sup>-1</sup>)
 
|
 
|
 
|
 
|
 
|
 
|
 
|-
 
|<div align="center">from Stratosphere</div>
 
|0.129642
 
|0.129852
 
|0.121441
 
 
|0.128670
 
|0.128670
| -0.416594
 
| -0.364521
 
|-
 
|<div align="center">within Troposphere</div>
 
 
|32.9831
 
|32.9831
|32.9831
 
|32.9831
 
|32.9831
 
|30.7121
 
|29.8965
 
|-bgcolor="#eeddee"
 
|Sinks (g day<sup>-1</sup>)
 
|
 
|
 
|
 
|
 
|
 
|
 
|-
 
|<div align="center">Dry Deposition</div>
 
|3.21013
 
|3.66397
 
|3.49208
 
 
|3.48612
 
|3.48612
|3.41419
 
|3.09103
 
|--
 
|<div align="center">Wet Deposition</div>
 
|29.8775
 
|29.4223
 
|29.5857
 
 
|29.5991
 
|29.5991
|26.8553
 
|26.4195
 
|-
 
|<div align="right">Stratiform</div>
 
|21.3283
 
|19.4090
 
|19.5148
 
 
|20.8285
 
|20.8285
|18.4270
 
|20.4989
 
|-
 
|<div align="right">Convective</div>
 
|8.54923
 
|10.0134
 
|10.0709
 
 
|8.77061
 
|8.77061
|8.42831
 
|5.92056
 
|-
 
|<div align="center">Radioactive decay</div>
 
|0.0266710
 
|0.0251665
 
|0.0268078
 
 
|0.0265495
 
|0.0265495
|0.0260832
 
|0.0214641
 
|}
 
  
--[[User:Bmy|Bob Y.]] 13:49, 28 November 2011 (EST)<br>
+
|-valign="top"
--[[User:Melissa Payer|Melissa Sulprizio]] 12:43, 13 September 2013 (EDT)
+
|[[GEOS-Chem v9-01-02|v9-01-02]]
 +
|[[GEOS-5]]
 +
|2005
 +
|317.884
 +
|9.60957
 +
|0.121441
 +
|32.9831
 +
|3.49208
 +
|29.5857
 +
|19.5148
 +
|10.0709
 +
|0.0268078
  
=== Budget of Be7 from 1-year benchmark simulations ===
+
|-valign="top"
 +
|[[GEOS-Chem v9-01-01|v9-01-01]]
 +
|[[GEOS-5]]
 +
|2005
 +
|316.253
 +
|9.55568
 +
|0.129852
 +
|32.9831
 +
|3.66397
 +
|29.4223
 +
|19.4090
 +
|10.0134
 +
|0.0251665
  
In this table we plot the budgets of Be<sup>7</sup> obtained from 1-year benchmark simulations done with various GEOS-Chem versions.  The simulations were done for year 2005, with a 4-year spinup. (Computed by [mailto:hongyu.liu-1@nasa.gov Hongyu Liu])
+
|-valign="top"
 +
|[[GEOS-Chem v8-03-02|v8-03-02]]
 +
|[[GEOS-5]]
 +
|2005
 +
|298.318
 +
|9.01288
 +
|0.129642
 +
|32.9831
 +
|3.21013
 +
|29.8775
 +
|21.3283
 +
|8.54923
 +
|0.0266710
  
{| border=1 cellspacing=0 cellpadding=5
 
|- bgcolor="#CCCCCC"
 
!width="200px"|Quantity
 
![[GEOS-Chem v8-03-02|v8-03-02]]<br>w/ GEOS-5
 
![[GEOS-Chem v9-01-01|v9-01-01]]<br>w/ GEOS-5
 
![[GEOS-Chem v9-01-02|v9-01-02]]<br>w/ GEOS-5
 
![[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]<br>w/ GEOS-5
 
|-
 
|Burden (g)
 
|4.31961
 
|4.39407
 
|4.39653
 
|4.37787
 
|-
 
|Residence time (days)
 
|33.9930
 
|34.8514
 
|34.8814
 
|34.6750
 
|-bgcolor="#eeddee"
 
|Sources (g day<sup>-1</sup>)
 
|
 
|
 
|
 
|
 
|-
 
|<div align="center">from Stratosphere</div>
 
|0.0504585
 
|0.0504328
 
|0.0504253
 
|0.0504472
 
|-
 
|<div align="center">within Troposphere</div>
 
|0.132552
 
|0.132552
 
|0.132552
 
|0.132552
 
|-bgcolor="#eeddee"
 
|Sinks (g day<sup>-1</sup>)
 
|
 
|
 
|
 
|
 
|-
 
|<div align="center">Dry Deposition</div>
 
|0.00808056
 
|0.00969345
 
|0.00936374
 
|0.00882144
 
|--
 
|<div align="center">Wet Deposition</div>
 
|0.118666
 
|0.116060
 
|0.116350
 
|0.117156
 
|-
 
|<div align="right">Stratiform</div>
 
|0.0846774
 
|0.0767926
 
|0.0769681
 
|0.0858211
 
|-
 
|<div align="right">Convective</div>
 
|0.0339885
 
|0.0392671
 
|0.0393817
 
|0.0313346
 
|-
 
|<div align="center">Radioactive decay</div>
 
|0.0562636
 
|0.0572312
 
|0.0572633
 
|0.0570217
 
 
|}
 
|}
  
--[[User:Bmy|Bob Y.]] 13:58, 28 November 2011 (EST)<br>
+
NOTES:
--[[User:Melissa Payer|Melissa Payer]] 10:19, 19 January 2012 (EST)
+
*'''Bolded''' text denotes change in meteorology product and/or meteorology year.
 +
*The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by [mailto:hongyu.liu-1@nasa.gov Hongyu Liu])
 +
*The benchmark simulations for [[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]] were done for June 2012&ndash;May 2013, with a 2-month spinup. This was due to data availability of the [[GEOS-FP]] met fields at the time of the simulation. (Completed by [mailto:kyu@seas.harvard.edu Karen Yu])
 +
*The simulations for [[GEOS-Chem v10-01]] and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
 +
*The simulations for [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]] and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
 +
*'''''<span style="color:darkorange">Hongyu Liu and Bo Zhang are investigating the low Pb tropospheric lifetime against deposition observed in v11-01b using GEOS-FP. A quick fix was tested in v11-01d, but subsequently removed because of the high impact on aerosols. For more information, see [[Wet_deposition#Low_tropospheric_210Pb_lifetime_against_deposition_in_v11-01b|this discussion on the ''Wet deposition'' wiki page]].</span>
  
== References ==
+
=== Budget of Be7 ===
  
#Liu, H., D. Jacob, I. Bey, and R.M. Yantosca, ''Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields'', <u>J. Geophys. Res</u>, '''106''', D11, 12,109-12,128, 2001.
+
In this table we plot the budgets of Be<sup>7</sup> obtained from 1-year benchmark simulations at 4&deg; x 5&deg; resolution done with various GEOS-Chem versions.
#Jacob et al., ''Evaluation and intercomparison of global atmospheric transport models using Rn-222 and other short-lived tracers'', <u>J. Geophys. Res</u>, '''102''', 5953-5970, 1997.
+
#Koch, D. <u>J. Geophys. Res</u>, '''101''', D13, 18651, 1996.
+
#Lal, D., and B. Peters, ''Cosmic ray produced radioactivity on the Earth''. <u>Handbuch der Physik</u>, '''46/2''', 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.  
+
  
== Previous issues that are now resolved ==
+
{| border=1 cellspacing=0 cellpadding=5
 +
|- bgcolor="#CCCCCC"
 +
!width="150px" rowspan="3"|Version
 +
!width="75px" rowspan="3"|Met Field
 +
!width="75px" rowspan="3"|Year
 +
!width="100px" rowspan="3"|Tropospheric burden [g]
 +
!width="100px" rowspan="3"|Tropospheric lifetime against deposition [days]
 +
!width="150px" colspan="2"|Sources [g day -1]
 +
!width="375px" colspan="5"|Sinks [g day-1]
  
=== Incorrect Rn values caused by bug in convection_mod.f ===
+
|-bgcolor="#CCCCCC"
 +
!width="75px" rowspan="2"|From Stratosphere
 +
!width="75px" rowspan="2"|From Troposphere
 +
!width="75px" rowspan="2"|Dry Deposition
 +
!width="225px" colspan="3"|Wet Deposition
 +
!width="75px" rowspan="2"|Radioactive decay
  
[[GEOS-Chem_v8-03-02#TINY_parameter_in_convection_mod.f|The bug in convection_mod.f described here]] can cause incorrect values of Rn in [[GEOS-Chem v8-03-01]] and prior versions.  This was fixed in [[GEOS-Chem v8-03-02]].
+
|-bgcolor="#CCCCCC"
 +
!width="75px"|Total
 +
!width="75px"|Stratiform
 +
!width="75px"|Convective
  
--[[User:Bmy|Bob Y.]] 16:17, 19 May 2011 (EDT)
+
|-valign="top"
 +
|[[GEOS-Chem 12#12.8.0|12.8.0]]<br>(with [https://github.com/geoschem/geos-chem/pull/95 Luo2019] wetdep)
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|1.1882
 +
|9.5228
 +
|0.2882
 +
|0.1149
 +
|0.0052
 +
|0.1188
 +
|0.1029
 +
|0.0159
 +
|0.0154770
  
=== Bug for ND44 diagnostic in diag3.f ===
+
|-valign="top"
 +
|[[GEOS-Chem 12#12.8.0|12.8.0]]
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|2.8927
 +
|20.5842
 +
|0.2882
 +
|0.1149
 +
|0.0095
 +
|0.1305
 +
|0.1047
 +
|0.0258
 +
|0.0376572
  
'''''NOTE: This bug was issued as a post-release patch ("v9-01-01-Patch-diags") in [[GEOS-Chem v9-01-01]] and was approved on 07 Jun 2011.'''''
+
|-valign="top"
 +
|[[GEOS-Chem_12_benchmark_history#12.2.0-TransportTracers|12.2.0]]
 +
|[[GEOS-FP]] (72L)
 +
|2016
 +
|3.55540
 +
|24.5959
 +
|0.0541444
 +
|0.136303
 +
|0.00952537
 +
|0.134645
 +
|0.108871
 +
|0.0257736
 +
|0.0462768
  
In the ND44 diagnostic section of <tt>diag3.f</tt>, the following lines are present twice (once for drydep fluxes and again for drydep velocities). This is a special-case for some tracers in the Caltech isoprene scheme:
+
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run2|v11-02e]]
 +
|[[GEOS-FP]] (72L)
 +
|'''2016'''
 +
|3.56036
 +
|24.6000
 +
|0.0543652
 +
|0.136303
 +
|0.00955045
 +
|0.134776
 +
|0.108970
 +
|0.0258063
 +
|0.0463413
  
              ! Special case for tracers with several dry dep. tracers
+
|-valign="top"
              ! E.g. ISOPN: ISOPND and ISOPNB.
+
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run1|v11-02e]]
              ! We handle both tracers at the same time so we need to
+
|[[GEOS-FP]] '''(72L)'''
              ! skip the second tracer. (ccc, 2/3/10)
+
|2013
              !IF ( MMB /= NN ) CYCLE
+
|3.50286
              IF ( MMB /= NN                .OR.
+
|24.9516
    &              DEPNAME( N ) == 'ISOPNB' .OR.
+
|0.0529614
    &              DEPNAME( N ) == 'MVKN'      ) CYCLE
+
|0.132687
 +
|0.0102709
 +
|0.129784
 +
|0.103733
 +
|0.0260514
 +
|0.0455928
  
However, these lines will cause the drydep fluxes and velocities for Be7 to be skipped.  The fix is to bracket these lines with an IF statement so that they will only execute for a full-chemistry simulation:
+
|-valign="top"
 +
|[[GEOS-Chem_v11-02 benchmark_history#v11-02e-RnPbBePasv-Run0|v11-02e]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.51047
 +
|24.9816
 +
|0.0531919
 +
|0.132687
 +
|0.0102796
 +
|0.129907
 +
|0.103831
 +
|0.0260759
 +
|0.0456918
  
            IF ( ITS_A_FULLCHEM_SIM() ) THEN
+
|-valign="top"
              ! Special case for tracers with several dry dep. tracers
+
|[[GEOS-Chem_v11-02 benchmark_history#v11-02b-RnPbBePasv|v11-02b]]
              ! E.g. ISOPN: ISOPND and ISOPNB.
+
|[[GEOS-FP]]
              ! We handle both tracers at the same time so we need to
+
|2013
              ! skip the second tracer. (ccc, 2/3/10)
+
|3.51002
              !IF ( MMB /= NN ) CYCLE
+
|24.9773
              IF ( MMB /= NN                .OR.
+
|0.0531920
    &              DEPNAME( N ) == 'ISOPNB' .OR.
+
|0.132688
    &              DEPNAME( N ) == 'MVKN'      ) CYCLE
+
|0.0103364
            ENDIF
+
|0.129856
 +
|0.103796
 +
|0.0260605
 +
|0.0456861
  
--[[User:Bmy|Bob Y.]] 11:57, 7 July 2011 (EDT)
+
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01i|v11-01i]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.51044
 +
|24.9815
 +
|0.0531920
 +
|0.132685
 +
|0.0102795
 +
|0.129907
 +
|0.103831
 +
|0.0260760
 +
|0.0456914
  
=== Out-of-bounds errors in ND01, ND02 diagnostics ===
+
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01h|v11-01h]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.27337
 +
|22.7988
 +
|0.0531059
 +
|0.132685
 +
|0.00626941
 +
|0.136914
 +
|0.124153
 +
|0.0127610
 +
|0.0426082
  
'''''This issue was fixed in [[GEOS-Chem v9-01-02]], just prior to its release.'''''
+
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 +
|'''[[MERRA-2]]'''
 +
|2013
 +
|3.12435
 +
|21.2728
 +
|0.0538848
 +
|0.133202
 +
|0.00650753
 +
|0.139910
 +
|0.124784
 +
|0.0151255
 +
|0.0406699
  
In <tt>RnPbBe_mod.F</tt>, the ND01 (Source of Rn, Pb, Be) and ND02 (Decay of Rn, Pb, Be) diagnostics had [[Common GEOS-Chem error messages#Array-out-of-bounds|array-out-of-bounds errors]] if you requested less than 47 levels.
+
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01f|v11-01f]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.27720
 +
|22.8066
 +
|0.0531204
 +
|0.132842
 +
|0.00628201
 +
|0.137021
 +
|0.124239
 +
|0.0127822
 +
|0.0426591
  
For example, if you specified these settings in your <tt>input.geos</tt> file (assuming a GEOS-5 or MERRA simulation  w/ 47 levels):
+
|-valign="top"
 +
|[[GEOS-Chem_v11-01 benchmark_history#v11-01d|v11-01d]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.32564
 +
|23.2523
 +
|0.0530363
 +
|0.132914
 +
|0.00664940
 +
|0.135989
 +
|0.122347
 +
|0.0136424
 +
|0.0433123
  
ND01: Rn/Pb/Be source  : 47  all
+
|-valign="top"
ND02: Rn/Pb/Be decay    : 47  all
+
|[[GEOS-Chem_v11-01 benchmark_history#v11-01b|v11-01b]]
 +
|[[GEOS-FP]]
 +
|2013
 +
|3.33530
 +
|23.3408
 +
|0.0530463
 +
|0.132914
 +
|0.00698390
 +
|0.135539
 +
|0.1228950
 +
|0.0126441
 +
|0.0434378
  
then your run would work just fine. However, if you tried this:
+
|-valign="top"
 +
|[[GEOS-Chem_v10-01 benchmark_history#v10-01-public-release|v10-01]]
 +
|[[GEOS-FP]]
 +
|'''2013'''
 +
|3.98942
 +
|30.1194
 +
|0.0512072
 +
|0.132977
 +
|0.00794288
 +
|0.124298
 +
|0.1101450
 +
|0.0141529
 +
|0.0519433
  
ND01: Rn/Pb/Be source  :  1  all
+
|-valign="top"
ND02: Rn/Pb/Be decay    :  1  all
+
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
 +
|'''[[GEOS-FP]]'''
 +
|2012/2013
 +
|3.41039
 +
|25.9787
 +
|0.0630964
 +
|0.112349
 +
|0.00782526
 +
|0.123206
 +
|0.1093560
 +
|0.0138500
 +
|0.0444134
  
then your run would crash.  In some instances, the error masked itself as an I/O error (i.e. "file not found").  This is because an out-of-bounds was probably corrupting the variables that were used to check if all of the data had been read from a particular met field file.
+
|-valign="top"
 
+
|[[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]]
To prevent this from happening, we now test whether the L index is smaller or equal to LD01 (the vertical extent of the AD01 array) or LD02 (the vertical extent of the AD02 array). We have now modified all of the IF statements where the ND01 or ND02 diagnostics are invoked.
+
|[[GEOS-5]]
 +
|'''2012/2013'''
 +
|3.49564
 +
|27.5376
 +
|0.0674867
 +
|0.104750
 +
|0.00881422
 +
|0.117906
 +
|0.0844566
 +
|0.0334494
 +
|0.0455165
  
For example, we took the existing block of code:
+
|-valign="top"
 +
|[[GEOS-Chem v9-01-03 benchmark history#v9-01-03e_2|v9-01-03e]]
 +
|[[GEOS-5]]
 +
|2005
 +
|4.37787
 +
|34.6750
 +
|0.0504472
 +
|0.132552
 +
|0.00882144
 +
|0.117156
 +
|0.0858211
 +
|0.0393817
 +
|0.0570217
  
      ! ND01 diag: 7Be emission [kg/s]
+
|-valign="top"
      IF ( ND01 > 0 ) THEN
+
|[[GEOS-Chem v9-01-02|v9-01-02]]
        AD01(I,J,L,3) = AD01(I,J,L,3) + ( ADD_Be / DTSRCE )
+
|[[GEOS-5]]
      ENDIF
+
|2005
 +
|4.39653
 +
|34.8814
 +
|0.0504253
 +
|0.132552
 +
|0.00936374
 +
|0.116350
 +
|0.0769681
 +
|0.0393817
 +
|0.0572633
  
and add an additional test on L:
+
|-valign="top"
 +
|[[GEOS-Chem v9-01-01|v9-01-01]]
 +
|[[GEOS-5]]
 +
|2005
 +
|4.39407
 +
|34.8514
 +
|0.0504328
 +
|0.132552
 +
|0.00969345
 +
|0.116060
 +
|0.0767926
 +
|0.0392671
 +
|0.0572312
  
      ! ND01 diag: 7Be emission [kg/s]
+
|-valign="top"
      IF ( ND01 > 0 .and. L <= LD01 ) THEN
+
|[[GEOS-Chem v8-03-02|v8-03-02]]
        AD01(I,J,L,3) = AD01(I,J,L,3) + ( ADD_Be / DTSRCE )
+
|[[GEOS-5]]
      ENDIF
+
|2005
 +
|4.31961
 +
|33.9930
 +
|0.0504585
 +
|0.132552
 +
|0.00808056
 +
|0.118666
 +
|0.0846774
 +
|0.0339885
 +
|0.0562636
  
etc.
+
|}
  
We will add this fix into [[GEOS-Chem v9-01-02]], since it does not affect the full-chemistry simulation.
+
NOTES:
 +
*'''Bolded''' text denotes change in meteorology product and/or meteorology year.
 +
*The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by [mailto:hongyu.liu-1@nasa.gov Hongyu Liu])
 +
*The benchmark simulations for [[GEOS-Chem v9-02 benchmark history#v9-02r|v9-02r]] were done for June 2012&ndash;May 2013, with a 2-month spinup. This was due to data availability of the [[GEOS-FP]] met fields at the time of the simulation. (Completed by [mailto:kyu@seas.harvard.edu Karen Yu])
 +
*The simulations for [[GEOS-Chem v10-01]] and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GEOS-Chem Support Team]])
 +
*The simulations for [[GEOS-Chem 12#12.2.0|GEOS-Chem 12.2.0]] and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing ([[Boundary_layer_mixing#VDIFF|VDIFF]]) scheme. (Completed by the [[GCST|GEOS-Chem Support Team]])
  
--[[User:Bmy|Bob Y.]] 11:08, 28 November 2011 (EST)
+
== References ==
 
+
=== Missing drydep diagnostics caused by tracer name error  ===
+
 
+
'''''This update was tested in the 1-month benchmark simulation [[GEOS-Chem_v9-01-03_benchmark_history#v9-01-03g|v9-01-03g]] and approved on 27 Feb 2012.'''''
+
 
+
Please use the following tracer names in <tt>input.geos</tt> when setting up a Rn-Pb-Be simulation:
+
 
+
%%% TRACER MENU %%%    :
+
Type of simulation      : 1
+
Number of Tracers      : 3                     
+
Tracer Entries -------> : TR#  Name  g/mole  Tracer Members; () = emitted
+
Tracer #1              :  1  Rn    222.0 
+
Tracer #2              :  2  Pb    210.0
+
Tracer #3              :  3  Be7      7.0
+
 
+
If you use alternate spellings for the Rn and Pb tracers, such as:
+
 
+
Tracer #1              :  1  Rn222  222.0 
+
Tracer #2              :  2  Pb210  210.0
+
 
+
Then this may cause the dry deposition fluxes and frequencies for Pb<sup>210</sup> not to be printed out.
+
  
A fix is forthcoming in [[GEOS-Chem v9-01-03]].
+
#Liu, H., D. Jacob, I. Bey, and R.M. Yantosca, ''Constraints from <sup>210</sup>Pb and <sup>7</sup>Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields'', <u>J. Geophys. Res</u>, '''106''', D11, 12109-12128, 2001.
 +
#Jacob et al., ''Evaluation and intercomparison of global atmospheric transport models using <sup>222</sup>Rn and other short-lived tracers'', <u>J. Geophys. Res</u>, '''102''', 5953-5970, 1997.
 +
#Koch, D.M., D.J. Jacob, and W.C. Graustein, ''Vertical transport of tropospheric aerosols as indicated by <sup>7</sup>Be and <sup>210</sup>Pb in a chemical tracer model'', <u>J. Geophys. Res</u>, '''101''', D13, 18651-18666, 1996.
 +
#Koch, D., and D. Rind, ''Beryllium 10/beryllium 7 as a tracer of stratospheric transport'', <u>J. Geophys. Res.</u>, '''103''', D4, 3907-3917, 1998.
 +
#Lal, D., and B. Peters, ''Cosmic ray produced radioactivity on the Earth''. <u>Handbuch der Physik</u>, '''46/2''', 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.
  
--[[User:Bmy|Bob Y.]] 11:57, 7 July 2011 (EDT)
 
  
== Outstanding issues ==
+
----
 +
'''''[[Tagged O3 simulation|Previous]] | [[Guide to GEOS-Chem simulations|Next]] | [[Guide to GEOS-Chem simulations]]'''''

Revision as of 14:19, 20 September 2022

Previous | Next | Guide to GEOS-Chem simulations

  1. Simulations using KPP-built mechanisms
  2. Aerosol-only simulation
  3. CH4 simulation
  4. CO2 simulation
  5. Hg simulation
  6. POPs simulation
  7. Tagged CO simulation
  8. Tagged O3 simulation
  9. TransportTracers simulation


This page contains information about the Radon-Lead-Beryllium (and optional passive species) simulation in GEOS-Chem.

Overview

The Rn-Pb-Be simulation in GEOS-Chem was based on that of the old Harvard/GISS CTM model. The current simulation follows Liu et al (2001).

The standard Rn-Pb-Be simulation uses the following tracers:

  1. Rn222, which is emitted naturally from soils
  2. Pb210, which is the primary decay product of Rn222
  3. Be7, which is produced by cosmic rays in the stratosphere and upper atmosphere
  4. Be10, which is produced by cosmic rays in the stratosphere and upper atmosphere (introduced in GEOS-Chem 12.2.0)
  5. Plus several passive species used to diagnose transport

This simulation is most frequently used to validate the convection, advection, and wet scavenging processes in GEOS-Chem.

Zhang et al 2021 source of Rn222

In GEOS-Chem 13.4.0 and later versions, a new Radon source function based on Zhang et al., 2021 was implemented. This is now the default emission source.

Jacob et al 1997 source of Rn222

The Rn222 emissions source based on Jacob et al., 1997 was replaced by the Zhang et al., 2021 source (in GEOS-Chem 13.4.0). It still may be used as a research option.

Latitudes Rn222 Emission
90°N - 70°N
  • Everywhere: 0.0 atoms/cm2/s
70°N - 60°N
  • Everywhere: 0.005 atoms/cm2/s
  • Reduce emissions by a factor of 3 where surface temperature < 0° C
60°N - 60°S
  • Over land: 1 atom/cm2/s
  • Over oceans: 0.005 atoms/cm2/s
  • Reduce emissions by a factor of 3 where surface temperature < 0° C
60°S - 70°S
  • Everywhere: 0.005 atoms/cm2/s
  • Reduce emissions by a factor of 3 where surface temperature < 0° C
70°S - 90°S
  • Everywhere: 0.0 atoms/cm2/s

Pb210, Be7, and Be10 sources

Species Chemical source
Pb210 Radioactive decay from Rn222 according to the exponential law:
  • EXP( -ΔT * 2.097d-6 )

Where ΔT is the emission timestep in seconds.

Be7
Be7Strat
The source of Be7 is taken from the following reference:
  • Lal, D., and B. Peters, Cosmic ray produced radioactivity on the Earth. Handbuch der Physik, 46/2, 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.

with the following modifications from Liu et al. (2001):

  1. Replace data at (0 hPa altitude, 70°S latitude) following Koch (1996):
    • old value = 3000 disintegrations/g air/s
    • new value = 1900 disintegrations/g air/s
  2. The original Lal & Peters data ended at 70°S
    • Copy the data values at 70°S to 80°S and 90°S at all levels
Be10
Be10
Be10 has an identical source distribution as Be7 following Koch and Rind (1998).

--Bob Yantosca (talk) 13:43, 20 September 2022 (UTC)

Sinks

The table below shows the sinks for Rn222, Pb210, and Be7. In the equations below, ΔT is the emission timestep in seconds.

Species Chemical sink Drydep? Wetdep?
Rn222 Half-life of 3.83 days (Liu at al., 2001).

Decays into Pb210 according to the exponential law:

  • EXP( -ΔT * 2.097d-6 )
no no
Pb210 Half-life of 22.3 years (Liu et al., 2001).

Decays according to the exponential law:

  • EXP( -ΔT * 9.725d-10 )
yes yes
Be7
Be7Strat
Half-life of 53.3 days (Liu et al., 2001).

Decays according to the exponential law:

  • EXP( -ΔT * 1.506d-7 )
yes yes
Be10
Be10Strat
Half-life of 5.84e8 days (Koch and Rind, 1998).

Decays according to the exponential law:

  • EXP( -ΔT * 1.506d-7 )
yes yes

--Bob Yantosca (talk) 13:46, 20 September 2022 (UTC)

Non-local PBL mixing

Capability to use the non-local PBL mixing scheme was added in GEOS-Chem v9-02. Code updates were provided by Jintai Lin.

Karen Yu evaluated the non-local PBL mixing scheme in the Rn-Pb-Be simulation using GEOS-5 and GEOS-FP met fields. Please see these plots comparing the simulation with and without the non-local PBL mixing scheme.

--Bob Yantosca (talk) 16:43, 8 January 2016 (UTC)

1-year benchmark simulations

Benchmark overview

1-year Rn-Pb-Be benchmark simulations are completed at the request of the Transport Working Group or whenever an update is introduced into the code that will impact transport and/or wet deposition. Each of these benchmarks involve a 4-year spinup period, followed by the 1-year run used for evaluation.

Benchmark plots

Version Link
12.8.0
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.8.0/
12.2.0
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/GC_12/12.2.0/TransportTracers/output/
v11-02e
w/ GEOS-FP
(2016 met)
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run2/NLPBL/output/
v11-02e
w/ GEOS-FP
(72 levels)
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run1/NLPBL/output/
v11-02e
w/ GEOS-FP
(2013 met)
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02e/RnPbBePasv-Run0/NLPBL/output/
v11-02b
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-02/v11-02b/RnPbBePasv/RnPbBePasv_VDIFF/output/
v11-01i
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01i/RnPbBePasv/RnPbBePasv_VDIFF/output/
v11-01h
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01h/RnPbBePasv/RnPbBePasv_VDIFF/output/
v11-01f
w/ MERRA-2
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/MERRA2/RnPbBe/RnPbBePasv_VDIFF/output/
v11-01f
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01f/GEOSFP/RnPbBe/RnPbBePasv_VDIFF/output/
v11-01d
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01d/RnPbBe/RnPbBePasv_VDIFF/output/
v11-01b
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v11-01/v11-01b/RnPbBe/output/
v10-01
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v10-01/v10-01-public-release/RnPbBe/output/
v9-02r
w/ GEOS-FP
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geosfp/RnPbBe/output/pdf/
v9-02r
w/ GEOS-5
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-02/v9-02r/geos5/RnPbBe/output/pdf/
v9-01-03e
w/ GEOS-5
http://ftp.as.harvard.edu/gcgrid/geos-chem/1yr_benchmarks/v9-01-03/v9-01-03e/geos5/2005/RnPbBe/output/pdf/
v9-01-02
w/ GEOS-5
http://wiki.seas.harvard.edu/geos-chem/index.php/Rn-Pb-Be_simulation#Comparison_plots

Budget of Pb210

In this table we plot the budgets of Pb210 obtained from 1-year benchmark simulations at 4° x 5° resolution done with various GEOS-Chem versions.

Version Met Field Year Tropospheric burden [g] Tropospheric lifetime against deposition [days] Sources [g day -1] Sinks [g day-1]
From Stratosphere From Troposphere Dry Deposition Wet Deposition Radioactive decay
Total Stratiform Convective
12.8.0
(with Luo2019 wetdep)
GEOS-FP (72L) 2016 105.1827 3.2461 0.2690 32.1142 2.3068 30.0303 25.4236 4.6067 0.0088608
12.8.0 GEOS-FP (72L) 2016 211.6465 6.5363 0.2690 32.1142 3.9521 28.4142 19.9437 8.4705 0.0178018
12.2.0 GEOS-FP (72L) 2016 218.330 6.71344 0.236801 32.2602 3.95678 28.5218 20.0439 8.47787 0.0183735
v11-02e GEOS-FP (72L) 2016 217.941 6.71192 0.224000 32.2206 3.94971 28.4770 20.0147 8.46232 0.0183407
v11-02e GEOS-FP (72L) 2013 229.338 7.10583 0.219856 32.0661 3.90212 28.3646 19.9166 8.44793 0.0192987
v11-02e GEOS-FP 2013 229.338 7.10583 0.219864 32.0661 3.90212 28.3646 19.9166 8.44793 0.0192987
v11-02b GEOS-FP 2013 229.061 7.09725 0.219669 32.0661 3.93661 28.3299 19.8931 8.43679 0.0192754
v11-01i GEOS-FP 2013 229.335 7.10581 0.219894 32.0656 3.90206 28.3642 19.9163 8.44786 0.0192984
v11-01h GEOS-FP 2013 205.551 6.37603 0.200768 32.0656 3.32588 28.9232 22.2968 6.62642 0.0173020
v11-01f MERRA-2 2013 199.426 6.20202 0.237400 31.9437 3.26365 28.9007 21.7525 7.14814 0.0167875
v11-01f GEOS-FP 2013 204.931 6.37746 0.225323 31.9356 3.32210 28.8216 22.2060 6.61553 0.0172499
v11-01d GEOS-FP 2013 210.371 6.54296 0.225956 31.9538 3.41587 28.7451 21.9070 6.83813 0.0177696
v11-01b GEOS-FP 2013 212.655 6.60214 0.228550 31.9528 3.49478 28.6686 22.0420 6.62657 0.0179612
v10-01 GEOS-FP 2013 250.912 7.77516 0.0832825 32.2152 3.51910 28.7582 22.0207 6.73749 0.0211769
v9-02r GEOS-FP 2012/2013 247.630 7.71356 0.143133 31.9904 3.15887 28.9538 22.5351 6.41867 0.0208565
v9-02r GEOS-5 2012/2013 305.699 9.25835 0.419521 32.6109 3.42747 29.5772 20.2059 9.37127 0.0257354
v9-01-03e GEOS-5 2005 314.790 9.51050 0.128670 32.9831 3.48612 29.5991 20.8285 8.77061 0.0265495
v9-01-02 GEOS-5 2005 317.884 9.60957 0.121441 32.9831 3.49208 29.5857 19.5148 10.0709 0.0268078
v9-01-01 GEOS-5 2005 316.253 9.55568 0.129852 32.9831 3.66397 29.4223 19.4090 10.0134 0.0251665
v8-03-02 GEOS-5 2005 298.318 9.01288 0.129642 32.9831 3.21013 29.8775 21.3283 8.54923 0.0266710

NOTES:

  • Bolded text denotes change in meteorology product and/or meteorology year.
  • The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by Hongyu Liu)
  • The benchmark simulations for v9-02r were done for June 2012–May 2013, with a 2-month spinup. This was due to data availability of the GEOS-FP met fields at the time of the simulation. (Completed by Karen Yu)
  • The simulations for GEOS-Chem v10-01 and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing (VDIFF) scheme. (Completed by the GEOS-Chem Support Team)
  • The simulations for GEOS-Chem 12.2.0 and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing (VDIFF) scheme. (Completed by the GEOS-Chem Support Team)
  • Hongyu Liu and Bo Zhang are investigating the low Pb tropospheric lifetime against deposition observed in v11-01b using GEOS-FP. A quick fix was tested in v11-01d, but subsequently removed because of the high impact on aerosols. For more information, see this discussion on the Wet deposition wiki page.

Budget of Be7

In this table we plot the budgets of Be7 obtained from 1-year benchmark simulations at 4° x 5° resolution done with various GEOS-Chem versions.

Version Met Field Year Tropospheric burden [g] Tropospheric lifetime against deposition [days] Sources [g day -1] Sinks [g day-1]
From Stratosphere From Troposphere Dry Deposition Wet Deposition Radioactive decay
Total Stratiform Convective
12.8.0
(with Luo2019 wetdep)
GEOS-FP (72L) 2016 1.1882 9.5228 0.2882 0.1149 0.0052 0.1188 0.1029 0.0159 0.0154770
12.8.0 GEOS-FP (72L) 2016 2.8927 20.5842 0.2882 0.1149 0.0095 0.1305 0.1047 0.0258 0.0376572
12.2.0 GEOS-FP (72L) 2016 3.55540 24.5959 0.0541444 0.136303 0.00952537 0.134645 0.108871 0.0257736 0.0462768
v11-02e GEOS-FP (72L) 2016 3.56036 24.6000 0.0543652 0.136303 0.00955045 0.134776 0.108970 0.0258063 0.0463413
v11-02e GEOS-FP (72L) 2013 3.50286 24.9516 0.0529614 0.132687 0.0102709 0.129784 0.103733 0.0260514 0.0455928
v11-02e GEOS-FP 2013 3.51047 24.9816 0.0531919 0.132687 0.0102796 0.129907 0.103831 0.0260759 0.0456918
v11-02b GEOS-FP 2013 3.51002 24.9773 0.0531920 0.132688 0.0103364 0.129856 0.103796 0.0260605 0.0456861
v11-01i GEOS-FP 2013 3.51044 24.9815 0.0531920 0.132685 0.0102795 0.129907 0.103831 0.0260760 0.0456914
v11-01h GEOS-FP 2013 3.27337 22.7988 0.0531059 0.132685 0.00626941 0.136914 0.124153 0.0127610 0.0426082
v11-01f MERRA-2 2013 3.12435 21.2728 0.0538848 0.133202 0.00650753 0.139910 0.124784 0.0151255 0.0406699
v11-01f GEOS-FP 2013 3.27720 22.8066 0.0531204 0.132842 0.00628201 0.137021 0.124239 0.0127822 0.0426591
v11-01d GEOS-FP 2013 3.32564 23.2523 0.0530363 0.132914 0.00664940 0.135989 0.122347 0.0136424 0.0433123
v11-01b GEOS-FP 2013 3.33530 23.3408 0.0530463 0.132914 0.00698390 0.135539 0.1228950 0.0126441 0.0434378
v10-01 GEOS-FP 2013 3.98942 30.1194 0.0512072 0.132977 0.00794288 0.124298 0.1101450 0.0141529 0.0519433
v9-02r GEOS-FP 2012/2013 3.41039 25.9787 0.0630964 0.112349 0.00782526 0.123206 0.1093560 0.0138500 0.0444134
v9-02r GEOS-5 2012/2013 3.49564 27.5376 0.0674867 0.104750 0.00881422 0.117906 0.0844566 0.0334494 0.0455165
v9-01-03e GEOS-5 2005 4.37787 34.6750 0.0504472 0.132552 0.00882144 0.117156 0.0858211 0.0393817 0.0570217
v9-01-02 GEOS-5 2005 4.39653 34.8814 0.0504253 0.132552 0.00936374 0.116350 0.0769681 0.0393817 0.0572633
v9-01-01 GEOS-5 2005 4.39407 34.8514 0.0504328 0.132552 0.00969345 0.116060 0.0767926 0.0392671 0.0572312
v8-03-02 GEOS-5 2005 4.31961 33.9930 0.0504585 0.132552 0.00808056 0.118666 0.0846774 0.0339885 0.0562636

NOTES:

  • Bolded text denotes change in meteorology product and/or meteorology year.
  • The simulations that utilized GEOS-5 met fields were done for year 2005, with a 4-year spinup. (Computed by Hongyu Liu)
  • The benchmark simulations for v9-02r were done for June 2012–May 2013, with a 2-month spinup. This was due to data availability of the GEOS-FP met fields at the time of the simulation. (Completed by Karen Yu)
  • The simulations for GEOS-Chem v10-01 and later versions utilized GEOS-FP met fields for the year 2013, with a 4-year spinup. The results reported here are for simulations using the non-local PBL mixing (VDIFF) scheme. (Completed by the GEOS-Chem Support Team)
  • The simulations for GEOS-Chem 12.2.0 and later versions utilized GEOS-FP met fields for the year 2016, with a 10-year spinup. The results reported here are for simulations using the non-local PBL mixing (VDIFF) scheme. (Completed by the GEOS-Chem Support Team)

References

  1. Liu, H., D. Jacob, I. Bey, and R.M. Yantosca, Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res, 106, D11, 12109-12128, 2001.
  2. Jacob et al., Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers, J. Geophys. Res, 102, 5953-5970, 1997.
  3. Koch, D.M., D.J. Jacob, and W.C. Graustein, Vertical transport of tropospheric aerosols as indicated by 7Be and 210Pb in a chemical tracer model, J. Geophys. Res, 101, D13, 18651-18666, 1996.
  4. Koch, D., and D. Rind, Beryllium 10/beryllium 7 as a tracer of stratospheric transport, J. Geophys. Res., 103, D4, 3907-3917, 1998.
  5. Lal, D., and B. Peters, Cosmic ray produced radioactivity on the Earth. Handbuch der Physik, 46/2, 551-612, edited by K. Sitte, Springer-Verlag, New York, 1967.



Previous | Next | Guide to GEOS-Chem simulations