GEOS-Chem species: Henry's law metadata

From Geos-chem
Revision as of 19:18, 11 May 2020 by Bmy (Talk | contribs) (I)

Jump to: navigation, search

Henry's law constants used in GEOS-Chem

For DD_Hstar we assume a pH value of 7 (i.e., the pH of plant stomata). While DD_Hstar can be thought of as a Henry's law constant, in reality it is a tunable parameter that was used to obtain the best fit with observational dry deposition velocities.

For Henry_K0 and Henry_CR, we assume a pH value of 4.5.

A-B

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
ACET Acetone 1.0e+5 27.4 5500.0
ACTA Acetic acid 4100.0 4050.0 6200.0
ALD2 Acetaldehyde 11.0 13.2 5900.0 Bates and Jacob 2019
ASOG1
ASOG2
ASOG3
Lumped non-volatile gas products of light aromatics + IVOCs 1.0e+5 1.0e+5 6039.0 Havala Pye
ATOOH ATO2 peroxide 294.0 294.0 5200.0 Bates and Jacob 2019
Br2 Molecular bromine 7.6e-01 7.6e-01 3720 Yang et al 2005
BrNO3 Bromine nitrate 1.00e+20 Sander

C-D

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
C2H6 Ethane 0.00193 2400.0 Bates and Jacob 2019
C3H8 Propane 0.00152 2400.0 Bates and Jacob 2019
CH2Br2 Dibromomethane 1.22 5000.0 Bates and Jacob 2019
CH2O Formaldehyde 3000.0 3240.0 6800.0 Bates and Jacob 2019
CH3Br Methyl bromide 0.132 2800.0 Bates and Jacob 2019
CH3I Methyl iodide 0.20265 3600.0
CHBr3 Bromoform 1.72 5200.0 Bates and Jacob 2019
Cl2 Molecular chlorine 0.092 0.092 2000.0 X. Wang et al 2020 (in 12.9.0+)
ClNO2 Nitryl chloride 0.045 X. Wang et al 2020 (in 12.9.0+)
ClNO3 Chlorine nitrate 1e+20 X. Wang et al 2020 (in 12.9.0+)
ClO Chlorine monoxide 0.7 X. Wang et al 2020 (in 12.9.0+)
ClOO Chlorine dioxide 1.0 1.0 3500.0 X. Wang et al 2020 (in 12.9.0+)
DMS Dimethyl sulfide 0.48 3100.0

E-F-G

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
EOH Ethanol 190.0 193.0 6400.0 Bates and Jacob 2019
ETHLN Ethanol nitrate 2.0e+6 17000.0 9200.0 Bates and Jacob 2019
ETNO3 Ethyl nitrate 1.6 1.6 5400.0
ETP Ethylhydroperoxide 294.0 334.0 6000.0 Bates and Jacob 2019
GLYC Glycoaldehyde 41000.0 41500.0 4600.0 Bates and Jacob 2019
GLYX Glyoxal 3.6e+5 4.15e+5 7500.0 Bates and Jacob 2019

H

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
H2O2 Hydrogen peroxide 5.0e+8 83000.0 7400.0 Jacob et al 2000
HAC Hydroxyacetone 1.4e+6 7800.0 0.0 Bates and Jacob 2019
HBr Hypobromic acid 7.1e+15 7.1e+13 10200.0
  • HSTAR: p-TOMCAT (cf. Dean 1992)
  • K0 and CR: Yang et al 2005.
HC5A isoprene-4,1-hydroxyaldehyde 7800.0 7800.0 0.0 Bates and Jacob 2019


HCl Hydrochloric acid 2.05e+06 7.10e+15 11000 In GEOS-Chem 12.8.0 and prior:
  • HSTAR: Seb Eastham (17 Apr 2013)
  • K0, CR: Yang et al 2005
HCl Hydrochloric acid 2.05e+13 7.0e+10 11000.0 In GEOS-Chem 12.9.0 and later:
  • X. Wang et al 2020
Hg0 Elemental mercury 0.11
Hg2 Divalent mercury 1.00e+14 1.40e+06 8400
  • HSTAR: Helen Amos (23 Sep 2011)
  • K0, CR: Lindqvist & Rhode 1985
HI Hydrogen iodide 2.35e+16 7.43e+13 3187.2
HMHP Hydroxymethyl hydroperoxide 1.3e+6 1.3e+6 5200.0 Bates and Jacob 2019
HMML hydroxymethyl-methyl-a-lactone 1.2e+5 1.2e+5 7200.0 Bates and Jacob 2019


HNO3 Nitric acid 1.0e+14 In GEOS-Chem 12.8.1 and prior
HNO3 Nitric acid 1.0e+15 83000.0 7400.0 In GEOS-Chem 12.8.1 and prior
  • X. Wang et al 2020
HOBr Hypobromous acid 6100.0 6100.0 6014.0
  • X. Wang et al 2020 (in 12.9.0+)
HOCl Hypochlorous acid 650.0 650.0 5900.0
HOI Hypoiodous acid 15400.0 15400.0 8371.0
HONIT 2nd gen monoterpene organic nitrate 2.0e+6 2.69e+13 5487.0
HPALD1 d-4,1-C5-hydroperoxyaldehyde 40000.0 Bates and Jacob 2019
HPALD2 d-1,4-C5-hydroperoxyaldehyde 40000.0 Bates and Jacob 2019
HPALD3 b-2,1-C5-hydroperoxyaldehyde 40000.0 Bates and Jacob 2019
HPALD4 b-3,4-C5-hydroperoxyaldehyde 40000.0 Bates and Jacob 2019
HPETHNL Hydroperoxy ethanal 41000.0 41000.0 4600.0 Bates and Jacob 2019

I

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
I2 Molecular iodine 2.7 2.7 7507.4
I2O2 Diiodine dioxide 1e+20 1e+20 18900.0
I2O3 Diiodine trioxide 1e+20 1e+20 13400.0
I2O4 Diiodine tetraoxide 1e+20 1e+20 13400.0
IBr Iodine monobromide 24.3 24.0 4916.7
ICHE Isoprene hydroxy-carbonyl-epoxides 8.0e+7 8.0e+7 0.0 Bates and Jacob 2019
ICl Iodine monochloride 111.0 111.0 2105.5
ICPDH Isoprene dihydroxy hydroperoxycarbonyl 1.0e+8 1.0e+8 7200.0 Bates and Jacob 2019
IDC Lumped isoprene dicarbonyls 40000.0 Bates and Jacob 2019



IEPOX 1.e3+08 1.3e+08 0
  • F. Paulot??
ISOG1
ISOG1
ISOG3
1.00e+05 1.00e+05 6039
  • Havala Pye
ISOPN 1.7e+04 1.7e+04 9200
  • NOTE: ISOPN dry deposits as ISOPND and ISOPNB
  • HSTAR, K0, CR taken from Ito 2007

J-K-L

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References


LIMO 7.00e-02 7.00e-02 0
  • ??, maybe Havala Pye
MACR 6.50e+00
  • R. Sander (year not specified, probably 1999)
MAP 8.4e+02 8.4e+02 5300
  • R. Sander (year not specified, probably 1999)
MGLY 8.4e+02 8.4e+02 5300
  • Betterton & Hoffmann 1988
MOBA 2.30e+04 6300
  • Based on methacrylic acid with acetic acid T dependence (Fabien Paulot)
  • pKa = 4.1, pH =5
MMN 1.7e+04 1.7e+04 9200
  • MMN dry deposits as MACRN + MVKN
  • Ito 2007
MP
(aka CH3OOH)
0.0e+00 3.10e+2 5200
MTPA 4.90e+02 4.90e+02 0
  • Use K0 = 0.049 for all pinene (Sander 1999)
MTPO 4.90e+02 4.90e+02 0
  • Use K0 = 0.049 for all pinene (Sander 1999)
MVK 4.40e+01
  • R. Sander (year not specified, probably 1999)
N2O5 0.0e+00
  • N2O2 uses the same drydep velocity as HNO3, so set HSTAR = 0
NH3 2.00e+04 3.30e+06 4100
  • ?
NO2 1.00e-02
  • ? (original value from drydep_mod.F)
O3 1.00e-02
  • ? (original value from drydep_mod.F)
OPOG1
OPOG2
1.00e+05 1.00e+05 6039
  • Havala Pye
PAN 3.60e+00
  • ? (original value from drydep_mod.F)
PMN 0.00+00
  • PMN uses the same drydep velocity as PAN, so set HSTAR = 0
POG1
POG2
9.5e+00 9.5e+00 4700
  • Based on phenanthrene (cf Sander 1999)
  • NOTE: Make POG hydrophobic (cf Havala Pye)
POPG (PHE) 2.35e+01 2.35e+01 47
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 1.74e-03 ) * 0.0409 = 23.505
POPG (PYR) 7.61e+01 7.61e+01 43
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 5.37e-04 ) * 0.0409 = 76.163
POPG (BaP) 1.23e+03 1.23e+03 43
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 3.10e-05 ) * 0.0409 = 1319.354
PPN 0.00+00
  • PPN uses the same drydep velocity as PAN, so set HSTAR = 0
PROPNN 1.0e+03 1.0e+03 0
  • Nitrooxyacetone in Sander 1999
R4N2 0.00+00 R4N2
  • Uses same dry deposition velocity as PAN, so set HSTAR = 0
RIP 1.7e+06 1.7e+06 0
  • US EPA 2011
SO2 1.00e+05
  • ?
TSOG0
TSOG1
TSOG2
TSOG3
1.00e+05 1.00e+05 6039
  • Havala Pye

--Bob Y. (talk) 18:52, 6 October 2015 (UTC)