GEOS-Chem species: Henry's law metadata

From Geos-chem
Revision as of 18:15, 11 May 2020 by Bmy (Talk | contribs) (Created page with "=== Henry's law constants used in GEOS-Chem === For dry deposition, we assume a pH value of 7 (i.e. pH of plant water). For wet deposition, we assume a pH value of 4.5. {|...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Henry's law constants used in GEOS-Chem

For dry deposition, we assume a pH value of 7 (i.e. pH of plant water). For wet deposition, we assume a pH value of 4.5.

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
ACET Acetone 100000.0 27.4 5500.0
  • HSTAR: Original value from drydep_mod.F
ACTA Acetic acid 4100.0 4050.0 6200.0
AERI Iodine on aerosol 0.0


ALD2 Acetaldehyde 11.0 13.2 5900.0
  • K0, CR: Bates et al 2019
ASOG1
ASOG2
ASOG3
Lumped non-volatile gas products of light aromatics + IVOCs 100000.0 100000.0 6039.0
  • Havala Pye
Br2 7.6e-01 7.6e-01 3720
  • Yang et al 2005, Table 2 (assuming T = 298 K)
BrNO3 1.00e+20
  • Assume an infinite value of HSTAR (cf. Sander)
CH2O 6.00e+03 3.00e+03 7200
DMS 4.80e-01 3100
EOH 1.90e+02 1.90e+02 6600
GLYC 4.10e+04 4.10e+04 4600
  • Betterton & Hoffman 1988
GLYX 3.6e+05 3.6e+05 7200
  • Betterton & Hoffman 1988
H2O2 1.00e+05 8.30e+04 7400
  • HSTAR: This was the value that was originally in drydep_mod.F
  • K0, CR: cf Jacob et al 2000, Table 1
HAC 2.90e+03 2.93e+03 0
  • Spaulding et al 2002
HBr 7.10e+15 7.10e+13 10200
  • Set HSTAR to 7.1e+15, consistent with p-TOMCAT (cf. Dean 1992). Assumes a pH of 7 for the plant stomata.
  • K0 and CR are estimated by Yang et al 2005.
  • HBr has a large effective Henry's Law Constant, similar to HCl and HNO3, which have retention fractions (RFs) of 1 for wet deposition. RFs have not been measured for HBr; however, Stuart and Jacobson [2003] suggest that species with large Hstar's should have RF's of about 1.
HCl 2.05e+06 7.10e+15 11000
  • HSTAR: Seb Eastham (17 Apr 2013)
  • K0, CR: Yang et al 2005
Hg2 1.00e+14 1.40e+06 8400
  • K0, CR: Lindqvist & Rhode 1985
  • HSTAR: Set to 1e+14 by Helen Amos (23 Sep 2011)
HNO3 1.0e+14
  • Original value from drydep_mod.F
HOBr 6.10e+03 6.10e+03 6014
  • Set HSTAR and Hcp = 6.10e+3, which is consistent with p-TOMCAT (cf. Freznel et al 1998)
  • McGrath and Rowland, 1994 says dH_sol for HOBr = - 50 kJ/mol (- 12 kcal/mol)
  • Acid dissociation constant in Heff is small (1.5e-9), reported by Haag and Holne [1983]
IEPOX 1.e3+08 1.3e+08 0
  • F. Paulot??
ISOG1
ISOG1
ISOG3
1.00e+05 1.00e+05 6039
  • Havala Pye
ISOPN 1.7e+04 1.7e+04 9200
  • NOTE: ISOPN dry deposits as ISOPND and ISOPNB
  • HSTAR, K0, CR taken from Ito 2007
LIMO 7.00e-02 7.00e-02 0
  • ??, maybe Havala Pye
MACR 6.50e+00
  • R. Sander (year not specified, probably 1999)
MAP 8.4e+02 8.4e+02 5300
  • R. Sander (year not specified, probably 1999)
MGLY 8.4e+02 8.4e+02 5300
  • Betterton & Hoffmann 1988
MOBA 2.30e+04 6300
  • Based on methacrylic acid with acetic acid T dependence (Fabien Paulot)
  • pKa = 4.1, pH =5
MMN 1.7e+04 1.7e+04 9200
  • MMN dry deposits as MACRN + MVKN
  • Ito 2007
MP
(aka CH3OOH)
0.0e+00 3.10e+2 5200
MTPA 4.90e+02 4.90e+02 0
  • Use K0 = 0.049 for all pinene (Sander 1999)
MTPO 4.90e+02 4.90e+02 0
  • Use K0 = 0.049 for all pinene (Sander 1999)
MVK 4.40e+01
  • R. Sander (year not specified, probably 1999)
N2O5 0.0e+00
  • N2O2 uses the same drydep velocity as HNO3, so set HSTAR = 0
NH3 2.00e+04 3.30e+06 4100
  • ?
NO2 1.00e-02
  • ? (original value from drydep_mod.F)
O3 1.00e-02
  • ? (original value from drydep_mod.F)
OPOG1
OPOG2
1.00e+05 1.00e+05 6039
  • Havala Pye
PAN 3.60e+00
  • ? (original value from drydep_mod.F)
PMN 0.00+00
  • PMN uses the same drydep velocity as PAN, so set HSTAR = 0
POG1
POG2
9.5e+00 9.5e+00 4700
  • Based on phenanthrene (cf Sander 1999)
  • NOTE: Make POG hydrophobic (cf Havala Pye)
POPG (PHE) 2.35e+01 2.35e+01 47
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 1.74e-03 ) * 0.0409 = 23.505
POPG (PYR) 7.61e+01 7.61e+01 43
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 5.37e-04 ) * 0.0409 = 76.163
POPG (BaP) 1.23e+03 1.23e+03 43
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 3.10e-05 ) * 0.0409 = 1319.354
PPN 0.00+00
  • PPN uses the same drydep velocity as PAN, so set HSTAR = 0
PROPNN 1.0e+03 1.0e+03 0
  • Nitrooxyacetone in Sander 1999
R4N2 0.00+00 R4N2
  • Uses same dry deposition velocity as PAN, so set HSTAR = 0
RIP 1.7e+06 1.7e+06 0
  • US EPA 2011
SO2 1.00e+05
  • ?
TSOG0
TSOG1
TSOG2
TSOG3
1.00e+05 1.00e+05 6039
  • Havala Pye

--Bob Y. (talk) 18:52, 6 October 2015 (UTC)