Difference between revisions of "GEOS-Chem species: Henry's law metadata"

From Geos-chem
Jump to: navigation, search
(A-B)
 
(36 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Henry's law constants used in GEOS-Chem ==
+
----
 +
<span style="color:red"><big><strong>This Guide has not been updated since [[GEOS-Chem 12#12.8.0|GEOS-Chem 12.8.0]].  [https://geos-chem.readthedocs.io/en/latest/geos-chem-shared-docs/supplemental-guides/species-guide.html Species properties] for newer GEOS-Chem versions are now contained in the <tt>species_database.yml</tt> run-directory configuration file.</strong></big></span>
 +
----
  
For DD_Hstar we assume a pH value of 7 (i.e., the pH of plant stomata). While DD_Hstar can be thought of as a Henry's law constant, in reality it is a tunable parameter that was used to obtain the best fit with observational dry deposition velocities.
+
__FORCETOC__
 +
'''''[[Species in GEOS-Chem|Previous]] | [[GEOS-Chem species: Dry deposition metadata|Next]] | [[Guide to species in GEOS-Chem]]'''''
 +
#[[Species in GEOS-Chem]]
 +
#<span style="color:blue">'''Henry's law parameters'''</span>
 +
#[[GEOS-Chem species: Dry deposition metadata|Dry deposition parameters]]
 +
#[[GEOS-Chem species: Wet deposition metadata|Wet deposition parameters]]
 +
#[[GEOS-Chem species database]]
 +
#[[GEOS-Chem species units]]
 +
#[[Adding passive species to GEOS-Chem]]
 +
#[[Species indexing in GEOS-Chem]]
 +
 
 +
 
 +
On this page, we list the Henry's law constants for each species in GEOS-Chem.
 +
 
 +
== Overview ==
 +
 
 +
=== Definition of Henry's law constants ===
 +
 
 +
The table lists the Henry's law constants for each species as defined in the dry deposition and wet deposition modules in [[GEOS-Chem v11-01]] and prior versions.  These constants are:
 +
 
 +
{| border=1 cellspacing=0 cellpadding=5
 +
|-bgcolor="#CCCCCC"
 +
 
 +
|-valign="top" bgcolor="#CCCCCC"
 +
!width="100px"|Constant
 +
!width="75px"|Units
 +
!width="600px"|Description
 +
!width="200px"|Also known as
 +
 
 +
|-valign="top"
 +
|<tt>DD_Hstar</tt>
 +
|M atm<sup>-1</sup>
 +
|This is the Henry's law solubility constant (for T = 298.15 K and pH = 7) that is used in the GEOS-Chem dry deposition module. We use pH = 7 because this is the pH value of plant stomata.
 +
 
 +
NOTE: the DD_Hstar value as used in the GEOS-Chem dry deposition module is tuned to produce the correct depositon velocity.  So that is why species can have different values for DD_Hstar and Henry_K0.
 +
|
 +
*<tt>H<sup>cp</sup></tt>
 +
*<tt>Kstar298</tt>
 +
 
 +
|-valign="top"
 +
|<tt>Henry_K0</tt>
 +
|M atm<sup>-1</sup>
 +
|This is the Henry's law solubility constant (for T = 298.15 K and pH = 4.5) that is currently used in the GEOS-Chem wet deposition module.
 +
|
 +
*<tt>H<sup>cp</sup></tt>
 +
*<tt>Kstar298</tt>
 +
 
 +
|-valign="top"
 +
|<tt>Henry_CR</tt>
 +
|K
 +
|This is the Henry's law volatility constant that is currently used in the GEOS-Chem wet deposition module.  
 +
|
 +
*<tt>H_298R</tt>
 +
*<tt>d(ln H<sup>cp</sup>) / d(1/T)</tt>
 +
 
 +
|}
 +
 
 +
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 20:35, 11 May 2020 (UTC)
 +
 
 +
=== Computing the effective Henry's law constant in wet deposition ===
 +
 
 +
[[User:Christoph Keller|Christoph Keller]] has written a module (<tt>GeosUtil/henry_mod.F</tt>) to compute the effective Henry's law constant given the Henry_K0 and Henry_CR parameters listed above. 
 +
 
 +
This computation requires two steps.
 +
 
 +
:1. If the value of <tt>K0</tt> for a given species [[#List of constants from the literature|from in the table above]] is in units of mol m<sup>-3</sup> Pa<sup>-1</sup>, then convert this to M atm<sup>-1</sup> by multiplying by 101.325.  The formulae below require <tt>H<sup>cp</sup></tt> in M atm<sup>-1</sup>.
 +
 
 +
:2. Call routine <tt>CALC_KH</tt> in <tt>GeosUtil/henry_mod.F</tt> to compute the dimensionless liquid over gas Henry's law constant at a given temperature <tt>T</tt> .  This routine uses the following formula:
 +
 
 +
      KH = K0 * EXP( CR * ( 1/T - 1/298.15 ) ) * R * T / ATM
 +
 
 +
:where
 +
 
 +
:#<tt>K0</tt> is the Henry's law solubility constant, in M atm<sup>-1</sup>,
 +
:#<tt>CR</tt> is the Henry's law volatility constant, in K,
 +
:#<tt>T</tt> is the temperature in K,
 +
:#<tt>R</tt> is the universal gas constant = 8.3144621 J K<sup>-1</sup> mol<sup>-1</sup>,
 +
:#<tt>ATM</tt> is the reference pressure at STP = 101.325 mPa, and
 +
:#<tt>298.15</tt> is the reference temperature (in K) at STP
 +
 
 +
--[[User:Bmy|Bob Yantosca]] ([[User talk:Bmy|talk]]) 20:57, 11 May 2020 (UTC)
 +
 
 +
== Henry's law constants used in GEOS-Chem ==
  
For Henry_K0 and Henry_CR, we assume a pH value of 4.5.
+
<big>Search for species alphabetically: '''[[#A-B|(A-B)]] [[#C-D-E-F-G|(C-D-E-F-G)]] [[#H|(H)]] [[#I|(I)]] [[#J-K-L-M|(J-K-L-M)]] [[#N-O-P-Q|(N-O-P-Q)]] [[#R through Z|(R through Z)]]'''</big>
 +
----
  
 
=== A-B ===
 
=== A-B ===
Line 74: Line 159:
 
|}
 
|}
  
=== C-D ===
+
=== C-D-E-F-G ===
  
 
{| border=1 cellspacing=0 cellpadding=5  
 
{| border=1 cellspacing=0 cellpadding=5  
Line 147: Line 232:
 
|0.092
 
|0.092
 
|2000.0
 
|2000.0
|X. Wang et al 2020 (in 12.9.0+)
+
|X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
  
 
|-valign="top"
 
|-valign="top"
Line 155: Line 240:
 
|
 
|
 
|
 
|
|X. Wang et al 2020 (in 12.9.0+)
+
|X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
  
 
|-valign="top"
 
|-valign="top"
Line 163: Line 248:
 
|
 
|
 
|
 
|
|X. Wang et al 2020 (in 12.9.0+)
+
|X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
  
 
|-valign="top"
 
|-valign="top"
Line 171: Line 256:
 
|
 
|
 
|
 
|
|X. Wang et al 2020 (in 12.9.0+)
+
|X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
  
 
|-valign="top"
 
|-valign="top"
Line 179: Line 264:
 
|1.0
 
|1.0
 
|3500.0
 
|3500.0
|X. Wang et al 2020 (in 12.9.0+)
+
|X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
  
 
|-valign="top"
 
|-valign="top"
Line 188: Line 273:
 
|3100.0
 
|3100.0
 
|
 
|
 
|}
 
 
=== E-F-G ===
 
 
{| border=1 cellspacing=0 cellpadding=5
 
|-bgcolor="#CCCCCC"
 
!width="100px"|Species
 
!width="250px"|FullName
 
!width="100px"|DD_Hstar<br>[M atm<sup>-1</sup>]
 
!width="100px"|Henry_K0<br>[M atm<sup>-1</sup>]
 
!width="100px"|Henry_CR<br>[K]
 
!width="400px"|References
 
  
 
|-valign="top"
 
|-valign="top"
Line 313: Line 385:
 
|2.05e+13
 
|2.05e+13
 
|7.0e+10
 
|7.0e+10
|11000.0\
+
|11000.0
 
|In GEOS-Chem 12.9.0 and later:
 
|In GEOS-Chem 12.9.0 and later:
 
*X. Wang et al 2020
 
*X. Wang et al 2020
Line 374: Line 446:
 
|83000.0
 
|83000.0
 
|7400.0
 
|7400.0
|In GEOS-Chem 12.8.1 and prior
+
|X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
*X. Wang et al 2020
+
  
 
|-valign="top"
 
|-valign="top"
Line 383: Line 454:
 
|6100.0
 
|6100.0
 
|6014.0
 
|6014.0
|
+
|X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
*X. Wang et al 2020 (in 12.9.0+)
+
  
 
|-valign="top"
 
|-valign="top"
Line 457: Line 527:
 
|-bgcolor="#CCCCCC"
 
|-bgcolor="#CCCCCC"
 
!width="100px"|Species
 
!width="100px"|Species
!width="200px"|FullName
+
!width="250px"|FullName
 
!width="100px"|DD_Hstar<br>[M atm<sup>-1</sup>]
 
!width="100px"|DD_Hstar<br>[M atm<sup>-1</sup>]
 
!width="100px"|Henry_K0<br>[M atm<sup>-1</sup>]
 
!width="100px"|Henry_K0<br>[M atm<sup>-1</sup>]
Line 464: Line 534:
  
 
|-valign="top"
 
|-valign="top"
|IEPOX ||1.e3+08 ||1.3e+08 ||0 ||
+
|I2
*F. Paulot??
+
|Molecular iodine
 +
|2.7
 +
|2.7
 +
|7507.4
 +
|
  
 
|-valign="top"
 
|-valign="top"
|ISOG1<br>ISOG1<br>ISOG3 ||1.00e+05 ||1.00e+05 ||6039 ||
+
|I2O2
*Havala Pye
+
|Diiodine dioxide
 +
|1e+20
 +
|1e+20
 +
|18900.0
 +
|
  
 
|-valign="top"
 
|-valign="top"
|ISOPN ||1.7e+04 ||1.7e+04 ||9200 ||
+
|I2O3
*NOTE: ISOPN dry deposits as ISOPND and ISOPNB
+
|Diiodine trioxide
*HSTAR, K0, CR taken from Ito 2007
+
|1e+20
 +
|1e+20
 +
|13400.0
 +
|
 +
|-valign="top"
 +
|I2O4
 +
|Diiodine tetraoxide
 +
|1e+20
 +
|1e+20
 +
|13400.0
 +
|
  
 
|-valign="top"
 
|-valign="top"
|LIMO ||7.00e-02 ||7.00e-02 ||0 ||
+
|IBr
*??, maybe Havala Pye
+
|Iodine monobromide
 +
|24.3
 +
|24.0
 +
|4916.7
 +
|
  
 
|-valign="top"
 
|-valign="top"
|MACR ||6.50e+00 || || ||
+
|ICHE
*R. Sander (year not specified, probably 1999)
+
|Isoprene hydroxy-carbonyl-epoxides
 +
|8.0e+7
 +
|8.0e+7
 +
|0.0
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|MAP ||8.4e+02 ||8.4e+02 ||5300 ||
+
|ICl
*R. Sander (year not specified, probably 1999)
+
|Iodine monochloride
 +
|111.0
 +
|111.0
 +
|2105.5
 +
|
  
 
|-valign="top"
 
|-valign="top"
|MGLY ||8.4e+02 ||8.4e+02 ||5300 ||
+
|ICPDH
*Betterton & Hoffmann 1988
+
|Isoprene dihydroxy hydroperoxycarbonyl
 +
|1.0e+8
 +
|1.0e+8
 +
|7200.0
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|MOBA || ||2.30e+04 ||6300 ||
+
|IDC
*Based on methacrylic acid with acetic acid T dependence (Fabien Paulot)
+
|Lumped isoprene dicarbonyls
*pKa = 4.1, pH =5
+
|40000.0
 +
|
 +
|
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|MMN ||1.7e+04 ||1.7e+04 ||9200 ||
+
|IDCHP
*MMN dry deposits as MACRN + MVKN
+
|Isoprene dicarbonyl hydroxy dihydroperoxide
*Ito 2007
+
|1.0e+8
 +
|1.0e+8
 +
|7200.0
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|MP<br>(aka CH3OOH) ||0.0e+00 || 3.10e+2 ||5200 ||
+
|IDHDP
*[http://acmg.seas.harvard.edu/geos/wiki_docs/deposition/wetdep.jacob_etal_2000.pdf Jacob et al 2000], Table 1
+
|Isoprene dihydroxy dihydroperoxide
 +
|1.0e+8
 +
|1.0e+8
 +
|7200.0
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|MTPA ||4.90e+02 ||4.90e+02 ||0 ||
+
|IDHPE
*Use K0 = 0.049 for all pinene (Sander 1999)
+
|Isoprene dihydroxy hydroperoxy epoxide
 +
|1.0e+8
 +
|1.0e+8
 +
|7200.0
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|MTPO ||4.90e+02 ||4.90e+02 ||0 ||
+
|IDN
*Use K0 = 0.049 for all pinene (Sander 1999)
+
|Lumped isoprene dinitrates
 +
|1.0e+8
 +
|1.0e+8
 +
|7200.0
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|MVK ||4.40e+01 || || ||
+
|IEPOXA
*R. Sander (year not specified, probably 1999)
+
|trans-Beta isoprene epoxydiol
 +
|8.0e+7
 +
|8.0e+7
 +
|0.0
 +
|
  
 
|-valign="top"
 
|-valign="top"
|N2O5 ||0.0e+00 || || ||
+
|IEPOXB
*N2O2 uses the same drydep velocity as HNO3, so set HSTAR = 0
+
|cis-Beta isoprene epoxydiol
 +
|8.0e+7
 +
|8.0e+7
 +
|0.0
 +
|
  
 
|-valign="top"
 
|-valign="top"
|NH3 ||2.00e+04 ||3.30e+06 ||4100 ||
+
|IEPOXD
*?
+
|Delta isoprene epoxydiol
 +
|8.0e+7
 +
|8.0e+7
 +
|0.0
 +
|
 +
 
 +
|-valign="top"
 +
|IHN1
 +
|Isoprene-d-4,1-hydroxynitrate
 +
|2.0e+6
 +
|17000.0
 +
|9200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|IHN2
 +
|Isoprene-b-1,2-hydroxynitrate
 +
|2.0e+6
 +
|17000.0
 +
|9200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|IHN3
 +
|Isoprene-b-4,3-hydroxynitrate
 +
|2.0e+6
 +
|17000.0
 +
|9200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|IHN4
 +
|Isoprene-d-4,1-hydroxynitrate
 +
|2.0e+6
 +
|17000.0
 +
|9200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|INPB
 +
|Lumped b-hydroperoxy isoprene nitrates
 +
|2.0e+6
 +
|17000.0
 +
|9200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|INPD
 +
|Lumped d-hydroperoxy isoprene nitrates
 +
|2.0e+6
 +
|17000.0
 +
|9200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|IONO
 +
|Nitryl iodide
 +
|0.3
 +
|0.3
 +
|7240.4
 +
|
 +
 
 +
|-valign="top"
 +
|IONO2
 +
|Iodine nitrate
 +
|1e+20
 +
|1e+20
 +
|3980.0
 +
|
 +
 
 +
|-valign="top"
 +
|ISOP
 +
|Isoprene
 +
|
 +
|0.0345
 +
|4400.0
 +
|
 +
 
 +
|-valign="top"
 +
|ITCN
 +
|lumped isoprene tetrafunctional carbonylnitrates
 +
|1.0e+8
 +
|1.0e+8
 +
|7200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|ITHN
 +
|Lumped isoprene tetrafunctional hydroxynitrates
 +
|1.0e+8
 +
|1.0e+8
 +
|7200.0
 +
|Bates and Jacob 2019
 +
 
 +
|}
 +
 
 +
=== J-K-L-M ===
 +
 
 +
{| border=1 cellspacing=0 cellpadding=5
 +
|-bgcolor="#CCCCCC"
 +
!width="100px"|Species
 +
!width="250px"|FullName
 +
!width="100px"|DD_Hstar<br>[M atm<sup>-1</sup>]
 +
!width="100px"|Henry_K0<br>[M atm<sup>-1</sup>]
 +
!width="100px"|Henry_CR<br>[K]
 +
!width="400px"|References
 +
 
 +
|-valign="top"
 +
|LIMO
 +
|Limonene
 +
|0.07
 +
|0.07
 +
|0.0
 +
|Havala Pye
 +
 
 +
|-valign="top"
 +
|LVOC
 +
|Gas-phase low-volatility non-IEPOX product of RIP ox
 +
|1.0e+8
 +
|1.0e+8
 +
|7200.0
 +
|
 +
 
 +
|-valign="top"
 +
|MACR
 +
|Methacrolein
 +
|6.5
 +
|4.86
 +
|4300.0
 +
|cf. Sander
 +
 
 +
|-valign="top"
 +
|MACR1OOH
 +
|Peracid from MACR
 +
|294.0
 +
|294.0
 +
|5200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MAP
 +
|Peroxyacetic acid
 +
|840.0
 +
|840.0
 +
|5300.0
 +
|cf. Sander (1999?)
 +
 
 +
|-valign="top"
 +
|MCRDH
 +
|Dihydroxy-methacrolein
 +
|1.4e+6
 +
|1.4e+6
 +
|7200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MCRENOL
 +
|Lumped enols from MVK/MACR
 +
|294.0
 +
|294.0
 +
|5200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MCRHN
 +
|Nitrate from MACR
 +
|2.0e+6
 +
|17000.0
 +
|9200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MCRHNB
 +
|Nitrate from MACR
 +
|2.0e+6
 +
|17000.0
 +
|9200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MEK
 +
|Methyl Ethyl Ketone
 +
|
 +
|18.2
 +
|5700.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MENO3
 +
|Methyl nitrate
 +
|2.0
 +
|11.0
 +
|4700.0
 +
|
 +
 
 +
|-valign="top"
 +
|MGLY
 +
|Methylglyoxal
 +
|3700.0
 +
|32400.0
 +
|6200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MOH
 +
|Methanol
 +
|203.0
 +
|203.0
 +
|5600.0
 +
|
 +
 
 +
|-valign="top"
 +
|MONITS
 +
|Saturated 1st gen monoterpene organic nitrate
 +
|2.0e+6
 +
|17000.0
 +
|9200.0
 +
|
 +
 
 +
|-valign="top"
 +
|MONITU
 +
|Unsaturated 1st gen monoterpene organic nitrate
 +
|2.0e+6
 +
|17000.0
 +
|9200.0
 +
|
 +
 
 +
|-valign="top"
 +
|MP
 +
|Methyl hydro peroxide
 +
|
 +
|294.0
 +
|5200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MPAN
 +
|Peroxymethacroyl nitrate (PMN)
 +
|1.72
 +
|1.72
 +
|0.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MPN
 +
|Methyl peroxy nitrate
 +
|
 +
|294.0
 +
|5200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MTPA
 +
|a-pinene, b-pinene, sabinene, carene
 +
|0.049
 +
|0.049
 +
|0.0
 +
|Sander 1999
 +
 
 +
 
 +
|-valign="top"
 +
|MTPO
 +
|Terpinene, terpinolene, myrcene, ocimene, other monoterpenes
 +
|0.049
 +
|0.049
 +
|0.0
 +
|Sander 1999
 +
 
 +
|-valign="top"
 +
|MVK
 +
|Methyl vinyl ketone
 +
|44.0
 +
|26.3
 +
|4800.0
 +
|Bates and Jacob 2019
 +
 
 +
 
 +
|-valign="top"
 +
|MVKDH
 +
|dihydroxy-MVK
 +
|1.4e+6
 +
|1.4e+6
 +
|7200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MVKHC
 +
|MVK hydroxy-carbonyl
 +
|1.4e+6
 +
|1.4e+6
 +
|7200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MVKHCB
 +
|MVK hydroxy-carbonyl
 +
|1.4e+6
 +
|1.4e+6
 +
|7200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MVKHP
 +
|MVK hydroxy-hydroperoxide
 +
|1.4e+6
 +
|1.4e+6
 +
|7200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MVKN
 +
|Nitrate from MVK
 +
|2.0e+6
 +
|17000.0
 +
|9200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|MVKPC
 +
|MVK hydroperoxy-carbonyl
 +
|1.4e+6
 +
|1.4e+6
 +
|7200.0
 +
|Bates and Jacob 2019
 +
 
 +
|}
 +
 
 +
=== N-O-P-Q ===
 +
 
 +
{| border=1 cellspacing=0 cellpadding=5
 +
|-bgcolor="#CCCCCC"
 +
!width="100px"|Species
 +
!width="250px"|FullName
 +
!width="100px"|DD_Hstar<br>[M atm<sup>-1</sup>]
 +
!width="100px"|Henry_K0<br>[M atm<sup>-1</sup>]
 +
!width="100px"|Henry_CR<br>[K]
 +
!width="400px"|References
 +
 
 +
|-valign="top"
 +
|N2O5
 +
|Dinitrogen pentoxide
 +
|1.0e+14
 +
|
 +
|
 +
|
 +
 
 +
|-valign="top"
 +
|NH3
 +
|Ammonia
 +
|20000.0
 +
|3.3e+6
 +
|4100.0
 +
|
 
   
 
   
 
|-valign="top"
 
|-valign="top"
|NO2 ||1.00e-02 || || ||
+
|NO2
*? (original value from drydep_mod.F)
+
|Nitrogen dioxide
 +
|0.01
 +
|
 +
|
 +
|
  
 
|-valign="top"
 
|-valign="top"
|O3  ||1.00e-02 || || ||
+
|NPRNO3
*? (original value from drydep_mod.F)
+
|n-propyl nitrate
 +
|1.1
 +
|1.1
 +
|5500.0
 +
|
  
 
|-valign="top"
 
|-valign="top"
|OPOG1<br>OPOG2 ||1.00e+05 ||1.00e+05 ||6039 ||
+
|O3
*Havala Pye
+
|Ozone
 +
|0.01
 +
|
 +
|
 +
|
  
 
|-valign="top"
 
|-valign="top"
|PAN ||3.60e+00 || || ||
+
|OPOG1<br>OPOG2
*? (original value from drydep_mod.F)
+
|Lumped gas product of SVOC oxidation
 +
|1.0e+5
 +
|1.0e+5
 +
|6039.0
 +
|Havala Pye
  
 
|-valign="top"
 
|-valign="top"
|PMN ||0.00+00 || || ||
+
|PAN
*PMN uses the same drydep velocity as PAN, so set HSTAR = 0
+
|Peroxyacetyl nitrate
 +
|3.6
 +
|2.94
 +
|5700.0
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|POG1<br>POG2 ||9.5e+00 ||9.5e+00 ||4700 ||
+
|POG1<br>POG2
*Based on phenanthrene (cf Sander 1999)
+
|Lumped gas primary SVOCs
*NOTE: Make POG hydrophobic (cf Havala Pye)
+
|9.5
 +
|9.5
 +
|
 +
|Sander 1999, based on phenanthrene
  
 
|-valign="top"
 
|-valign="top"
|POPG (PHE) ||2.35e+01 ||2.35e+01 ||47 ||
+
|POPG_BaP
 +
|Benzo(a)pyrene (gas phase)
 +
|1319.354829
 +
|1318.496208
 +
|5168.269231
 +
|
 
*HSTAR and K0: Ma et al 2010 (<u>J. Chem Eng. Data</u>)
 
*HSTAR and K0: Ma et al 2010 (<u>J. Chem Eng. Data</u>)
 
*CR: Scharzenbach 2003, p. 200
 
*CR: Scharzenbach 2003, p. 200
*NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 1.74e-03 ) * 0.0409 = 23.505
+
*NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 3.10e-05 ) * 0.0409 = 1319.35
  
 
|-valign="top"
 
|-valign="top"
|POPG (PYR) ||7.61e+01 ||7.61e+01 ||43 ||
+
|POPG_PHE
 +
|Phenanthrene (gas phase)
 +
|23.50574713
 +
|23.49044968
 +
|5649.038462
 +
|
 
*HSTAR and K0: Ma et al 2010 (<u>J. Chem Eng. Data</u>)
 
*HSTAR and K0: Ma et al 2010 (<u>J. Chem Eng. Data</u>)
 
*CR: Scharzenbach 2003, p. 200
 
*CR: Scharzenbach 2003, p. 200
*NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 5.37e-04 ) * 0.0409 = 76.163
+
*NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 1.74e-03 ) * 0.0409 = 23.505
  
 
|-valign="top"
 
|-valign="top"
|POPG (BaP) ||1.23e+03 ||1.23e+03 ||43 ||
+
|POPG_PYR
 +
|Pyrene (gas phase)
 +
|76.16387337
 +
|76.11430621
 +
|5168.269231
 +
|
 
*HSTAR and K0: Ma et al 2010 (<u>J. Chem Eng. Data</u>)
 
*HSTAR and K0: Ma et al 2010 (<u>J. Chem Eng. Data</u>)
 
*CR: Scharzenbach 2003, p. 200
 
*CR: Scharzenbach 2003, p. 200
*NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 3.10e-05 ) * 0.0409 = 1319.354
+
*NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 5.37e-04 ) * 0.0409 = 76.163
  
 
|-valign="top"
 
|-valign="top"
|PPN ||0.00+00 || || ||
+
|PP
*PPN uses the same drydep velocity as PAN, so set HSTAR = 0
+
|Peroxide from PO2
 +
|294.0
 +
|294.0
 +
|5200.0
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|PROPNN ||1.0e+03 ||1.0e+03 || 0 ||
+
|PPN
*Nitrooxyacetone in Sander 1999
+
|Lumped peroxypropionyl nitrate
 +
|3.6
 +
|2.94
 +
|0.0
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|R4N2 ||0.00+00 || || ||R4N2
+
|PROPNN
*Uses same dry deposition velocity as PAN, so set HSTAR = 0
+
|Propanone nitrate
 +
|5.e+5
 +
|1000.0
 +
|0.0
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|RIP  ||1.7e+06 ||1.7e+06 ||0 ||
+
|PRPN
*US EPA 2011
+
|Peroxide from PRN1
 +
|294.0
 +
|294.0
 +
|5200.0
 +
|Bates and Jacob 2019
  
 
|-valign="top"
 
|-valign="top"
|SO2 ||1.00e+05 || || ||
+
|PYAC
*?
+
|Pyruvic acid
 +
|314000.0
 +
|314000.0
 +
|5100.0
 +
|Bates and Jacob 2019
 +
 
 +
|}
 +
 
 +
=== R through Z ===
 +
 
 +
{| border=1 cellspacing=0 cellpadding=5
 +
|-bgcolor="#CCCCCC"
 +
!width="100px"|Species
 +
!width="250px"|FullName
 +
!width="100px"|DD_Hstar<br>[M atm<sup>-1</sup>]
 +
!width="100px"|Henry_K0<br>[M atm<sup>-1</sup>]
 +
!width="100px"|Henry_CR<br>[K]
 +
!width="400px"|References
  
 
|-valign="top"
 
|-valign="top"
|TSOG0<br>TSOG1<br>TSOG2<br>TSOG3 ||1.00e+05 ||1.00e+05 ||6039 ||
+
|R4N2
*Havala Pye
+
|Lumped alkyl nitrate
 +
|17000.0
 +
|1.0
 +
|5800.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|R4P
 +
|Peroxide from R4O2
 +
|294.0
 +
|294.0
 +
|5200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|RA3P
 +
|Peroxide from A3O2
 +
|294.0
 +
|294.0
 +
|5200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|RB3P
 +
|Peroxide from B3O2
 +
|294.0
 +
|294.0
 +
|5200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|RCHO
 +
|Lumped aldehyde >= C3
 +
|
 +
|10.0
 +
|0.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|RIPA
 +
|1,2-ISOPOOH
 +
|1.7e+6
 +
|1.7e+6
 +
|0.0
 +
|
 +
 
 +
|-valign="top"
 +
|RIPB
 +
|4,3-ISOPOOH
 +
|1.7e+6
 +
|1.7e+6
 +
|0.0
 +
|
 +
 
 +
|-valign="top"
 +
|RIPC
 +
|d-1,4-ISOPOOH
 +
|1.7e+6
 +
|1.7e+6
 +
|0.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|RIPD
 +
|d-4,1-ISOPOOH
 +
|1.7e+6
 +
|1.7e+6
 +
|0.0
 +
|
 +
 
 +
|-valign="top"
 +
|RP
 +
|Peroxide from RCO3
 +
|294.0
 +
|294.0
 +
|5200.0
 +
|Bates and Jacob 2019
 +
 
 +
|-valign="top"
 +
|SO2
 +
|Sulfur dioxide
 +
|1.0e+5
 +
|
 +
|
 +
|
 +
 
 +
|-valign="top"
 +
|TSOG0<br>TSOG1<br>TSOG2<br>TSOG3<br>
 +
|Lumped semivolatile gas products of monoterpene + sesquiterpene oxidation
 +
|1.0e+5
 +
|1.0e+5
 +
|6039.0
 +
|Havala Pye
  
 
|}
 
|}
  
--[[User:Bmy|Bob Y.]] ([[User talk:Bmy|talk]]) 18:52, 6 October 2015 (UTC)
+
== References ==
 +
 
 +
To be added
 +
 
 +
 
 +
----
 +
'''''[[Species in GEOS-Chem|Previous]] | [[GEOS-Chem species: Dry deposition metadata|Next]] || [[Guide to species in GEOS-Chem]]'''''

Latest revision as of 18:42, 10 August 2022


This Guide has not been updated since GEOS-Chem 12.8.0. Species properties for newer GEOS-Chem versions are now contained in the species_database.yml run-directory configuration file.



Previous | Next | Guide to species in GEOS-Chem

  1. Species in GEOS-Chem
  2. Henry's law parameters
  3. Dry deposition parameters
  4. Wet deposition parameters
  5. GEOS-Chem species database
  6. GEOS-Chem species units
  7. Adding passive species to GEOS-Chem
  8. Species indexing in GEOS-Chem


On this page, we list the Henry's law constants for each species in GEOS-Chem.

Overview

Definition of Henry's law constants

The table lists the Henry's law constants for each species as defined in the dry deposition and wet deposition modules in GEOS-Chem v11-01 and prior versions. These constants are:

Constant Units Description Also known as
DD_Hstar M atm-1 This is the Henry's law solubility constant (for T = 298.15 K and pH = 7) that is used in the GEOS-Chem dry deposition module. We use pH = 7 because this is the pH value of plant stomata.

NOTE: the DD_Hstar value as used in the GEOS-Chem dry deposition module is tuned to produce the correct depositon velocity. So that is why species can have different values for DD_Hstar and Henry_K0.

  • Hcp
  • Kstar298
Henry_K0 M atm-1 This is the Henry's law solubility constant (for T = 298.15 K and pH = 4.5) that is currently used in the GEOS-Chem wet deposition module.
  • Hcp
  • Kstar298
Henry_CR K This is the Henry's law volatility constant that is currently used in the GEOS-Chem wet deposition module.
  • H_298R
  • d(ln Hcp) / d(1/T)

--Bob Yantosca (talk) 20:35, 11 May 2020 (UTC)

Computing the effective Henry's law constant in wet deposition

Christoph Keller has written a module (GeosUtil/henry_mod.F) to compute the effective Henry's law constant given the Henry_K0 and Henry_CR parameters listed above.

This computation requires two steps.

1. If the value of K0 for a given species from in the table above is in units of mol m-3 Pa-1, then convert this to M atm-1 by multiplying by 101.325. The formulae below require Hcp in M atm-1.
2. Call routine CALC_KH in GeosUtil/henry_mod.F to compute the dimensionless liquid over gas Henry's law constant at a given temperature T . This routine uses the following formula:
     KH = K0 * EXP( CR * ( 1/T - 1/298.15 ) ) * R * T / ATM
where
  1. K0 is the Henry's law solubility constant, in M atm-1,
  2. CR is the Henry's law volatility constant, in K,
  3. T is the temperature in K,
  4. R is the universal gas constant = 8.3144621 J K-1 mol-1,
  5. ATM is the reference pressure at STP = 101.325 mPa, and
  6. 298.15 is the reference temperature (in K) at STP

--Bob Yantosca (talk) 20:57, 11 May 2020 (UTC)

Henry's law constants used in GEOS-Chem

Search for species alphabetically: (A-B) (C-D-E-F-G) (H) (I) (J-K-L-M) (N-O-P-Q) (R through Z)


A-B

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
ACET Acetone 1.0e+5 27.4 5500.0
ACTA Acetic acid 4100.0 4050.0 6200.0
ALD2 Acetaldehyde 11.0 13.2 5900.0 Bates and Jacob 2019
ASOG1
ASOG2
ASOG3
Lumped non-volatile gas products of light aromatics + IVOCs 1.0e+5 1.0e+5 6039.0 Havala Pye
ATOOH ATO2 peroxide 294.0 294.0 5200.0 Bates and Jacob 2019
Br2 Molecular bromine 7.6e-01 7.6e-01 3720 Yang et al 2005
BrNO3 Bromine nitrate 1.00e+20 Sander

C-D-E-F-G

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
C2H6 Ethane 0.00193 2400.0 Bates and Jacob 2019
C3H8 Propane 0.00152 2400.0 Bates and Jacob 2019
CH2Br2 Dibromomethane 1.22 5000.0 Bates and Jacob 2019
CH2O Formaldehyde 3000.0 3240.0 6800.0 Bates and Jacob 2019
CH3Br Methyl bromide 0.132 2800.0 Bates and Jacob 2019
CH3I Methyl iodide 0.20265 3600.0
CHBr3 Bromoform 1.72 5200.0 Bates and Jacob 2019
Cl2 Molecular chlorine 0.092 0.092 2000.0 X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
ClNO2 Nitryl chloride 0.045 X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
ClNO3 Chlorine nitrate 1e+20 X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
ClO Chlorine monoxide 0.7 X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
ClOO Chlorine dioxide 1.0 1.0 3500.0 X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
DMS Dimethyl sulfide 0.48 3100.0
EOH Ethanol 190.0 193.0 6400.0 Bates and Jacob 2019
ETHLN Ethanol nitrate 2.0e+6 17000.0 9200.0 Bates and Jacob 2019
ETNO3 Ethyl nitrate 1.6 1.6 5400.0
ETP Ethylhydroperoxide 294.0 334.0 6000.0 Bates and Jacob 2019
GLYC Glycoaldehyde 41000.0 41500.0 4600.0 Bates and Jacob 2019
GLYX Glyoxal 3.6e+5 4.15e+5 7500.0 Bates and Jacob 2019

H

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
H2O2 Hydrogen peroxide 5.0e+8 83000.0 7400.0 Jacob et al 2000
HAC Hydroxyacetone 1.4e+6 7800.0 0.0 Bates and Jacob 2019
HBr Hypobromic acid 7.1e+15 7.1e+13 10200.0
  • HSTAR: p-TOMCAT (cf. Dean 1992)
  • K0 and CR: Yang et al 2005.
HC5A isoprene-4,1-hydroxyaldehyde 7800.0 7800.0 0.0 Bates and Jacob 2019


HCl Hydrochloric acid 2.05e+06 7.10e+15 11000 In GEOS-Chem 12.8.0 and prior:
  • HSTAR: Seb Eastham (17 Apr 2013)
  • K0, CR: Yang et al 2005
HCl Hydrochloric acid 2.05e+13 7.0e+10 11000.0 In GEOS-Chem 12.9.0 and later:
  • X. Wang et al 2020
Hg0 Elemental mercury 0.11
Hg2 Divalent mercury 1.00e+14 1.40e+06 8400
  • HSTAR: Helen Amos (23 Sep 2011)
  • K0, CR: Lindqvist & Rhode 1985
HI Hydrogen iodide 2.35e+16 7.43e+13 3187.2
HMHP Hydroxymethyl hydroperoxide 1.3e+6 1.3e+6 5200.0 Bates and Jacob 2019
HMML hydroxymethyl-methyl-a-lactone 1.2e+5 1.2e+5 7200.0 Bates and Jacob 2019


HNO3 Nitric acid 1.0e+14 In GEOS-Chem 12.8.1 and prior
HNO3 Nitric acid 1.0e+15 83000.0 7400.0 X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
HOBr Hypobromous acid 6100.0 6100.0 6014.0 X. Wang et al 2020 (in GEOS-Chem 12.9.0+)
HOCl Hypochlorous acid 650.0 650.0 5900.0
HOI Hypoiodous acid 15400.0 15400.0 8371.0
HONIT 2nd gen monoterpene organic nitrate 2.0e+6 2.69e+13 5487.0
HPALD1 d-4,1-C5-hydroperoxyaldehyde 40000.0 Bates and Jacob 2019
HPALD2 d-1,4-C5-hydroperoxyaldehyde 40000.0 Bates and Jacob 2019
HPALD3 b-2,1-C5-hydroperoxyaldehyde 40000.0 Bates and Jacob 2019
HPALD4 b-3,4-C5-hydroperoxyaldehyde 40000.0 Bates and Jacob 2019
HPETHNL Hydroperoxy ethanal 41000.0 41000.0 4600.0 Bates and Jacob 2019

I

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
I2 Molecular iodine 2.7 2.7 7507.4
I2O2 Diiodine dioxide 1e+20 1e+20 18900.0
I2O3 Diiodine trioxide 1e+20 1e+20 13400.0
I2O4 Diiodine tetraoxide 1e+20 1e+20 13400.0
IBr Iodine monobromide 24.3 24.0 4916.7
ICHE Isoprene hydroxy-carbonyl-epoxides 8.0e+7 8.0e+7 0.0 Bates and Jacob 2019
ICl Iodine monochloride 111.0 111.0 2105.5
ICPDH Isoprene dihydroxy hydroperoxycarbonyl 1.0e+8 1.0e+8 7200.0 Bates and Jacob 2019
IDC Lumped isoprene dicarbonyls 40000.0 Bates and Jacob 2019
IDCHP Isoprene dicarbonyl hydroxy dihydroperoxide 1.0e+8 1.0e+8 7200.0 Bates and Jacob 2019
IDHDP Isoprene dihydroxy dihydroperoxide 1.0e+8 1.0e+8 7200.0 Bates and Jacob 2019
IDHPE Isoprene dihydroxy hydroperoxy epoxide 1.0e+8 1.0e+8 7200.0 Bates and Jacob 2019
IDN Lumped isoprene dinitrates 1.0e+8 1.0e+8 7200.0 Bates and Jacob 2019
IEPOXA trans-Beta isoprene epoxydiol 8.0e+7 8.0e+7 0.0
IEPOXB cis-Beta isoprene epoxydiol 8.0e+7 8.0e+7 0.0
IEPOXD Delta isoprene epoxydiol 8.0e+7 8.0e+7 0.0
IHN1 Isoprene-d-4,1-hydroxynitrate 2.0e+6 17000.0 9200.0 Bates and Jacob 2019
IHN2 Isoprene-b-1,2-hydroxynitrate 2.0e+6 17000.0 9200.0 Bates and Jacob 2019
IHN3 Isoprene-b-4,3-hydroxynitrate 2.0e+6 17000.0 9200.0 Bates and Jacob 2019
IHN4 Isoprene-d-4,1-hydroxynitrate 2.0e+6 17000.0 9200.0 Bates and Jacob 2019
INPB Lumped b-hydroperoxy isoprene nitrates 2.0e+6 17000.0 9200.0 Bates and Jacob 2019
INPD Lumped d-hydroperoxy isoprene nitrates 2.0e+6 17000.0 9200.0 Bates and Jacob 2019
IONO Nitryl iodide 0.3 0.3 7240.4
IONO2 Iodine nitrate 1e+20 1e+20 3980.0
ISOP Isoprene 0.0345 4400.0
ITCN lumped isoprene tetrafunctional carbonylnitrates 1.0e+8 1.0e+8 7200.0 Bates and Jacob 2019
ITHN Lumped isoprene tetrafunctional hydroxynitrates 1.0e+8 1.0e+8 7200.0 Bates and Jacob 2019

J-K-L-M

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
LIMO Limonene 0.07 0.07 0.0 Havala Pye
LVOC Gas-phase low-volatility non-IEPOX product of RIP ox 1.0e+8 1.0e+8 7200.0
MACR Methacrolein 6.5 4.86 4300.0 cf. Sander
MACR1OOH Peracid from MACR 294.0 294.0 5200.0 Bates and Jacob 2019
MAP Peroxyacetic acid 840.0 840.0 5300.0 cf. Sander (1999?)
MCRDH Dihydroxy-methacrolein 1.4e+6 1.4e+6 7200.0 Bates and Jacob 2019
MCRENOL Lumped enols from MVK/MACR 294.0 294.0 5200.0 Bates and Jacob 2019
MCRHN Nitrate from MACR 2.0e+6 17000.0 9200.0 Bates and Jacob 2019
MCRHNB Nitrate from MACR 2.0e+6 17000.0 9200.0 Bates and Jacob 2019
MEK Methyl Ethyl Ketone 18.2 5700.0 Bates and Jacob 2019
MENO3 Methyl nitrate 2.0 11.0 4700.0
MGLY Methylglyoxal 3700.0 32400.0 6200.0 Bates and Jacob 2019
MOH Methanol 203.0 203.0 5600.0
MONITS Saturated 1st gen monoterpene organic nitrate 2.0e+6 17000.0 9200.0
MONITU Unsaturated 1st gen monoterpene organic nitrate 2.0e+6 17000.0 9200.0
MP Methyl hydro peroxide 294.0 5200.0 Bates and Jacob 2019
MPAN Peroxymethacroyl nitrate (PMN) 1.72 1.72 0.0 Bates and Jacob 2019
MPN Methyl peroxy nitrate 294.0 5200.0 Bates and Jacob 2019
MTPA a-pinene, b-pinene, sabinene, carene 0.049 0.049 0.0 Sander 1999


MTPO Terpinene, terpinolene, myrcene, ocimene, other monoterpenes 0.049 0.049 0.0 Sander 1999
MVK Methyl vinyl ketone 44.0 26.3 4800.0 Bates and Jacob 2019


MVKDH dihydroxy-MVK 1.4e+6 1.4e+6 7200.0 Bates and Jacob 2019
MVKHC MVK hydroxy-carbonyl 1.4e+6 1.4e+6 7200.0 Bates and Jacob 2019
MVKHCB MVK hydroxy-carbonyl 1.4e+6 1.4e+6 7200.0 Bates and Jacob 2019
MVKHP MVK hydroxy-hydroperoxide 1.4e+6 1.4e+6 7200.0 Bates and Jacob 2019
MVKN Nitrate from MVK 2.0e+6 17000.0 9200.0 Bates and Jacob 2019
MVKPC MVK hydroperoxy-carbonyl 1.4e+6 1.4e+6 7200.0 Bates and Jacob 2019

N-O-P-Q

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
N2O5 Dinitrogen pentoxide 1.0e+14
NH3 Ammonia 20000.0 3.3e+6 4100.0
NO2 Nitrogen dioxide 0.01
NPRNO3 n-propyl nitrate 1.1 1.1 5500.0
O3 Ozone 0.01
OPOG1
OPOG2
Lumped gas product of SVOC oxidation 1.0e+5 1.0e+5 6039.0 Havala Pye
PAN Peroxyacetyl nitrate 3.6 2.94 5700.0 Bates and Jacob 2019
POG1
POG2
Lumped gas primary SVOCs 9.5 9.5 Sander 1999, based on phenanthrene
POPG_BaP Benzo(a)pyrene (gas phase) 1319.354829 1318.496208 5168.269231
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 3.10e-05 ) * 0.0409 = 1319.35
POPG_PHE Phenanthrene (gas phase) 23.50574713 23.49044968 5649.038462
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 1.74e-03 ) * 0.0409 = 23.505
POPG_PYR Pyrene (gas phase) 76.16387337 76.11430621 5168.269231
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 5.37e-04 ) * 0.0409 = 76.163
PP Peroxide from PO2 294.0 294.0 5200.0 Bates and Jacob 2019
PPN Lumped peroxypropionyl nitrate 3.6 2.94 0.0 Bates and Jacob 2019
PROPNN Propanone nitrate 5.e+5 1000.0 0.0 Bates and Jacob 2019
PRPN Peroxide from PRN1 294.0 294.0 5200.0 Bates and Jacob 2019
PYAC Pyruvic acid 314000.0 314000.0 5100.0 Bates and Jacob 2019

R through Z

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
R4N2 Lumped alkyl nitrate 17000.0 1.0 5800.0 Bates and Jacob 2019
R4P Peroxide from R4O2 294.0 294.0 5200.0 Bates and Jacob 2019
RA3P Peroxide from A3O2 294.0 294.0 5200.0 Bates and Jacob 2019
RB3P Peroxide from B3O2 294.0 294.0 5200.0 Bates and Jacob 2019
RCHO Lumped aldehyde >= C3 10.0 0.0 Bates and Jacob 2019
RIPA 1,2-ISOPOOH 1.7e+6 1.7e+6 0.0
RIPB 4,3-ISOPOOH 1.7e+6 1.7e+6 0.0
RIPC d-1,4-ISOPOOH 1.7e+6 1.7e+6 0.0 Bates and Jacob 2019
RIPD d-4,1-ISOPOOH 1.7e+6 1.7e+6 0.0
RP Peroxide from RCO3 294.0 294.0 5200.0 Bates and Jacob 2019
SO2 Sulfur dioxide 1.0e+5
TSOG0
TSOG1
TSOG2
TSOG3
Lumped semivolatile gas products of monoterpene + sesquiterpene oxidation 1.0e+5 1.0e+5 6039.0 Havala Pye

References

To be added



Previous | Next || Guide to species in GEOS-Chem