Difference between revisions of "GEOS-Chem species: Henry's law metadata"

From Geos-chem
Jump to: navigation, search
(Henry's law constants used in GEOS-Chem)
Line 28: Line 28:
 
|6200.0
 
|6200.0
 
|
 
|
 
|-valign="top"
 
|AERI
 
|Iodine on aerosol
 
|0.0
 
|
 
|
 
|
 
 
  
 
|-valign="top"
 
|-valign="top"
Line 44: Line 35:
 
|13.2
 
|13.2
 
|5900.0
 
|5900.0
|
+
|Bates et al 2019
Bates et al 2019
+
  
 
|-valign="top"
 
|-valign="top"
Line 53: Line 43:
 
|100000.0
 
|100000.0
 
|6039.0
 
|6039.0
|
+
|Havala Pye
*Havala Pye
+
  
 
|-valign="top"
 
|-valign="top"
Line 78: Line 67:
 
|  
 
|  
 
|
 
|
|
+
|Sander
|cf. Sander)
+
  
 
|-valign="top"
 
|-valign="top"
Line 136: Line 124:
 
|5200.0
 
|5200.0
 
|Bates et al 2019
 
|Bates et al 2019
 +
 +
|-valign="top"
 +
|Cl2
 +
|Molecular chlorine
 +
|0.092
 +
|0.092
 +
|2000.0
 +
|Wang et al 2020<br>(in 12.9.0+)
 +
 +
|-valign="top"
 +
|ClNO2
 +
|Nitryl chloride
 +
|0.045
 +
|
 +
|
 +
|Wang et al 2020<br>(in 12.9.0+)
 +
 +
|-valign="top"
 +
|ClNO3
 +
|Chlorine nitrate
 +
|1e+20
 +
|
 +
|
 +
|Wang et al 2020<br>(in 12.9.0+)
 +
 +
|-valign="top"
 +
|ClO
 +
|Chlorine monoxide
 +
|0.7
 +
|
 +
|
 +
|Wang et al 2020<br>(in 12.9.0+)
 +
 +
|-valign="top"
 +
|ClOO
 +
|Chlorine dioxide
 +
|1.0
 +
|1.0
 +
|3500.0
 +
|Wang et al 2020<br>(in 12.9.0+)
  
 
|-valign="top"
 
|-valign="top"

Revision as of 18:30, 11 May 2020

Henry's law constants used in GEOS-Chem

For dry deposition, we assume a pH value of 7 (i.e. pH of plant water). For wet deposition, we assume a pH value of 4.5.

Species FullName DD_Hstar
[M atm-1]
Henry_K0
[M atm-1]
Henry_CR
[K]
References
ACET Acetone 100000.0 27.4 5500.0
  • HSTAR: Original value from drydep_mod.F
ACTA Acetic acid 4100.0 4050.0 6200.0
ALD2 Acetaldehyde 11.0 13.2 5900.0 Bates et al 2019
ASOG1
ASOG2
ASOG3
Lumped non-volatile gas products of light aromatics + IVOCs 100000.0 100000.0 6039.0 Havala Pye
ATOOH ATO2 peroxide 294.0 294.0 5200.0 Bates et al 2019
Br2 Molecular bromine 7.6e-01 7.6e-01 3720 Yang et al 2005, Table 2 (assuming T = 298 K)
BrNO3 Bromine nitrate 1.00e+20 Sander
C2H6 Ethane 0.00193 2400.0 Bates et al 2019
C3H8 Propane 0.00152 2400.0 Bates et al 2019
CH2Br2 Dibromomethane 1.22 5000.0 Bates et al 2019
CH2O Formaldehyde 3000.0 3240.0 6800.0 Bates et al 2019
CH3Br Methyl bromide 0.132 2800.0 Bates et al 2019
CH3I Methyl iodide 0.20265 3600.0
CHBr3 Bromoform 1.72 5200.0 Bates et al 2019
Cl2 Molecular chlorine 0.092 0.092 2000.0 Wang et al 2020
(in 12.9.0+)
ClNO2 Nitryl chloride 0.045 Wang et al 2020
(in 12.9.0+)
ClNO3 Chlorine nitrate 1e+20 Wang et al 2020
(in 12.9.0+)
ClO Chlorine monoxide 0.7 Wang et al 2020
(in 12.9.0+)
ClOO Chlorine dioxide 1.0 1.0 3500.0 Wang et al 2020
(in 12.9.0+)
DMS 4.80e-01 3100
EOH 1.90e+02 1.90e+02 6600
GLYC 4.10e+04 4.10e+04 4600
  • Betterton & Hoffman 1988
GLYX 3.6e+05 3.6e+05 7200
  • Betterton & Hoffman 1988
H2O2 1.00e+05 8.30e+04 7400
  • HSTAR: This was the value that was originally in drydep_mod.F
  • K0, CR: cf Jacob et al 2000, Table 1
HAC 2.90e+03 2.93e+03 0
  • Spaulding et al 2002
HBr 7.10e+15 7.10e+13 10200
  • Set HSTAR to 7.1e+15, consistent with p-TOMCAT (cf. Dean 1992). Assumes a pH of 7 for the plant stomata.
  • K0 and CR are estimated by Yang et al 2005.
  • HBr has a large effective Henry's Law Constant, similar to HCl and HNO3, which have retention fractions (RFs) of 1 for wet deposition. RFs have not been measured for HBr; however, Stuart and Jacobson [2003] suggest that species with large Hstar's should have RF's of about 1.
HCl 2.05e+06 7.10e+15 11000
  • HSTAR: Seb Eastham (17 Apr 2013)
  • K0, CR: Yang et al 2005
Hg2 1.00e+14 1.40e+06 8400
  • K0, CR: Lindqvist & Rhode 1985
  • HSTAR: Set to 1e+14 by Helen Amos (23 Sep 2011)
HNO3 1.0e+14
  • Original value from drydep_mod.F
HOBr 6.10e+03 6.10e+03 6014
  • Set HSTAR and Hcp = 6.10e+3, which is consistent with p-TOMCAT (cf. Freznel et al 1998)
  • McGrath and Rowland, 1994 says dH_sol for HOBr = - 50 kJ/mol (- 12 kcal/mol)
  • Acid dissociation constant in Heff is small (1.5e-9), reported by Haag and Holne [1983]
IEPOX 1.e3+08 1.3e+08 0
  • F. Paulot??
ISOG1
ISOG1
ISOG3
1.00e+05 1.00e+05 6039
  • Havala Pye
ISOPN 1.7e+04 1.7e+04 9200
  • NOTE: ISOPN dry deposits as ISOPND and ISOPNB
  • HSTAR, K0, CR taken from Ito 2007
LIMO 7.00e-02 7.00e-02 0
  • ??, maybe Havala Pye
MACR 6.50e+00
  • R. Sander (year not specified, probably 1999)
MAP 8.4e+02 8.4e+02 5300
  • R. Sander (year not specified, probably 1999)
MGLY 8.4e+02 8.4e+02 5300
  • Betterton & Hoffmann 1988
MOBA 2.30e+04 6300
  • Based on methacrylic acid with acetic acid T dependence (Fabien Paulot)
  • pKa = 4.1, pH =5
MMN 1.7e+04 1.7e+04 9200
  • MMN dry deposits as MACRN + MVKN
  • Ito 2007
MP
(aka CH3OOH)
0.0e+00 3.10e+2 5200
MTPA 4.90e+02 4.90e+02 0
  • Use K0 = 0.049 for all pinene (Sander 1999)
MTPO 4.90e+02 4.90e+02 0
  • Use K0 = 0.049 for all pinene (Sander 1999)
MVK 4.40e+01
  • R. Sander (year not specified, probably 1999)
N2O5 0.0e+00
  • N2O2 uses the same drydep velocity as HNO3, so set HSTAR = 0
NH3 2.00e+04 3.30e+06 4100
  • ?
NO2 1.00e-02
  • ? (original value from drydep_mod.F)
O3 1.00e-02
  • ? (original value from drydep_mod.F)
OPOG1
OPOG2
1.00e+05 1.00e+05 6039
  • Havala Pye
PAN 3.60e+00
  • ? (original value from drydep_mod.F)
PMN 0.00+00
  • PMN uses the same drydep velocity as PAN, so set HSTAR = 0
POG1
POG2
9.5e+00 9.5e+00 4700
  • Based on phenanthrene (cf Sander 1999)
  • NOTE: Make POG hydrophobic (cf Havala Pye)
POPG (PHE) 2.35e+01 2.35e+01 47
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 1.74e-03 ) * 0.0409 = 23.505
POPG (PYR) 7.61e+01 7.61e+01 43
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 5.37e-04 ) * 0.0409 = 76.163
POPG (BaP) 1.23e+03 1.23e+03 43
  • HSTAR and K0: Ma et al 2010 (J. Chem Eng. Data)
  • CR: Scharzenbach 2003, p. 200
  • NOTE: In the code HSTAR & K0 are computed as ( 1.0 / 3.10e-05 ) * 0.0409 = 1319.354
PPN 0.00+00
  • PPN uses the same drydep velocity as PAN, so set HSTAR = 0
PROPNN 1.0e+03 1.0e+03 0
  • Nitrooxyacetone in Sander 1999
R4N2 0.00+00 R4N2
  • Uses same dry deposition velocity as PAN, so set HSTAR = 0
RIP 1.7e+06 1.7e+06 0
  • US EPA 2011
SO2 1.00e+05
  • ?
TSOG0
TSOG1
TSOG2
TSOG3
1.00e+05 1.00e+05 6039
  • Havala Pye

--Bob Y. (talk) 18:52, 6 October 2015 (UTC)