Dicarbonyls simulation

From Geos-chem
Revision as of 18:46, 18 June 2019 by Melissa Payer (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Obsolete.jpg

The dicarbonyls simulation is currently not compatible with GEOS-Chem v9-02 and higher versions. It needs to be re-integrated into the FlexChem chemistry solver.

This page describes the optional dicarbonyls chemistry mechanism as implemented in GEOS-Chem.

Overview

Brief description

From Fu et al [2008]:

We use the Master Chemistry Mechanism version 3.1 (MCMv3.1) [Saunders et al., 2003; Bloss et al., 2005] as principal guide for the VOC chemistry leading to glyoxal and methylglyoxal formation. Primary VOC precursors include isoalkanes, alkenes, acetylene, aromatics, isoprene, monoterpenes, acetone, methylbutenol (2-methyl-3-buten-2-ol), glycolaldehyde, and hydroxyacetone. The latter two are secondary products of VOC oxidation but are also emitted directly by biofuel use and open biomass burning. Glyoxal and methylglyoxal are themselves also emitted directly from these two sources [McDonald et al., 2000; Hays et al., 2002]. Primary anthropogenic emissions of glyoxal and methylglyoxal are small [Environmental Protection Agency, 2004; Volkamer et al., 2005b] and are not considered here.
GEOS-Chem includes a detailed O3-NOx-VOC-aerosol chemical mechanism [Horowitz et al., 1998; Bey et al., 2001; Martin et al., 2003; Park et al., 2006]. ... Fu et al. [2007] added to the model the chemistry of ethylene and xylenes For this work, we further updated the photochemical mechanisms of isoprene, propene, acetylene, glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone based on MCMv3.1 and Jet Propulsion Laboratory (JPL) [2006]. The quantum yield for acetone photolysis is updated to be dependent on both temperature and pressure, based on Blitz et al. [2004]. We also added parameterized dicarbonyl production from benzene, toluene, xylenes, monoterpenes, and methylbutenol.

Authors and collaborators

Dicarbonyls simulation user groups

User Group Personnel Projects
Peking University Tzung-May Fu ...
Univeristy of Minnesoata Dylan Millet ...
Colorado State University Colette Heald ...

--Bob Y. 16:10, 26 February 2010 (EST)

References

  1. Bey I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. Field, A. M. Fiore, Q. Li, H. Liu, L. J. Mickley, and M. Schultz, Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23,073-23,096, 2001. PDF
  2. Blitz, M. A., D. E. Heard, M. J. Pilling, S. R. Arnold, and M. P. Chipperfield, Pressure and temperature-dependent quantum yields for the photodissociation of acetone between 279 and 327.5 nm, Geophys. Res. Lett., 31, L06111, doi:10.1029/2003GL018793, 2004.
  3. Bloss, C., et al., Development of detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons, Atmos. Chem. Phys., 5, 641–664, 2005.
  4. Environmental Protection Agency, 1999 National emissions inventory version 3.0, Environmental Protection Agency, Washington, D.C., 2004. Link
  5. Horowitz, L.W., J. Liang, G.M. Gardner, and D.J. Jacob, Export of reactive nitrogen from North America during summertime, J. Geophys. Res., 103, 13,451-13,476, 1998. PDF
  6. Fu, T.-M., D. J. Jacob, P. I. Palmer, K. Chance, Y. X. Wang, B. Barletta, D. R. Blake, J. C. Stanton, M. J. Pilling, Space-based formaldehyde measurements as constraints on volatile organic compound emissions in East and South Asia, J. Geophys. Res., 112, D06312, doi:10.1029/2006JD007853, 2007. PDF
  7. Fu, T.-M., D.J. Jacob, and C.L. Heald, Aqueous-phase reactive uptake of dicarbonyls as a source of organic aerosol over eastern North America, Atmos. Environ., 43, 1,814-1,822, 2009.PDF
  8. Hays, M. D., C. D. Geron, K. J. Linna, N. D. Smith, and J. J. Schauer, Speciation of gas-phase and fine particle emissions from burning of foliar fuels, Environ. Sci. Technol., 36(11), 2281–2295, doi:10.1021/es0111683, 2002.
  9. Jet Propulsion Laboratory (JPL), Chemical Kinetics and PhotochemicalData for Use in Atmospheric Studies, Evaluation Number 15, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 2006.
  10. Martin, R.V., D.J. Jacob, R.M. Yantosca, M. Chin, and P. Ginoux, Global and Regional Decreases in Tropospheric Oxidants from Photochemical Effects of Aerosols, J. Geophys. Res., 108(D3), 4097, doi:10.1029/2002JD002622. PDF
  11. McDonald, J. D., B. Zielinska, E. M. Fujita, J. C. Sagebiel, J. C. Chow, and J. G. Watson, Fine particle and gaseous emission rates from residential wood combustion, Environ. Sci. Technol., 34(11), 2080–2091, doi:10.1021/es9909632, 2000.
  12. Park, R. J., D. J. Jacob, N. Kumar, and R. M. Yantosca, Regional visibility statistics in the United States: Natural and transboundary pollution influences, and implications for the Regional Haze Rule, Atmos. Environ., 40(28), 5405-5423, 2006. PDF
  13. Saunders, S. M., M. E. Jenkin, R. G. Derwen, and M. J. Pilling, Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, 2003.
  14. Volkamer, R., L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,Geophys. Res. Lett., 32, L08806, doi:10.1029/2005GL022616, 2005.