Difference between revisions of "Aerosols Working Group"

From Geos-chem
Jump to: navigation, search
(Recent GEOS-Chem updates related to aerosols)
(14 intermediate revisions by 7 users not shown)
Line 9: Line 9:
 
!width="300px" bgcolor="#CCCCCC"|Aerosols Working Group Co-Chairs
 
!width="300px" bgcolor="#CCCCCC"|Aerosols Working Group Co-Chairs
 
|width="600px"|
 
|width="600px"|
 +
*[http://www.atmos.washington.edu/blog/beckya/becky-alexander/ Becky Alexander] (GitHub @beckyalexander)
 
*[http://web.mit.edu/heald/www/ Colette Heald]
 
*[http://web.mit.edu/heald/www/ Colette Heald]
*[http://www.ce.cmu.edu/~adams/ Peter Adams]
+
*[http://pierce.atmos.colostate.edu/people.htm#jeff Jeff Pierce] (GitHub @theloniuspunk)
 +
*[http://www.albany.edu/~yfq/ Fangqun Yu]
  
 
|-valign="top"
 
|-valign="top"
Line 56: Line 58:
 
|-
 
|-
 
|Dalhousie
 
|Dalhousie
|Simulation of the absorbing aerosol index
+
|Decadal trends in PM2.5
|[mailto:mhammer17@hotmail.com Melanie Hammer]
+
|[mailto:ch296755@dal.ca Chi Li]
|26 Sep 2012
+
|13 Apr 2017
 
|-
 
|-
 
|Dalhousie
 
|Dalhousie
|Aerosol microphysics simulation of AOD and PM2.5
+
|Arctic aerosol number distributions
|[mailto:AR731886@DAL.CA Arjya Sarkar]
+
|[mailto:croft@mathstat.dal.ca Betty Croft]
|26 Sep 2012
+
|13 Apr 2017
 
|-
 
|-
 
|Dalhousie
 
|Dalhousie
|Arctic aerosol
+
|Arctic black carbon
|[mailto:croft@mathstat.dal.ca Betty Croft]
+
|[mailto:jn231250@dal.ca Junwei Xu]
|25 Apr 2015
+
|13 Apr 2017
 
|-
 
|-
 
|Dalhousie
 
|Dalhousie
|Satellite-based estimates of Asian PM2.5
+
|Metals in PM2.5  
 
|[mailto:jn231250@dal.ca Junwei Xu]
 
|[mailto:jn231250@dal.ca Junwei Xu]
|26 Sep 2012
+
|13 Apr 2017
 
|-
 
|-
 
|Dalhousie
 
|Dalhousie
|Assimilation of CALIOP vertical profiles
+
|Interpreting SPARTAN to understand PM2.5 chemical composition
|[mailto:colin.lee@dal.ca Colin Lee]
+
|[mailto:cr330325@dal.ca Crystal Weagle]
|5 Dec 2013
+
|13 April 2017
 
|-
 
|-
 
|Dalhousie
 
|Dalhousie
|Satellite-based estimates of Global PM2.5
+
|Aerosol mass scattering efficiency
|[mailto:Aaron.van.Donkelaar@dal.ca Aaron van Donkelaar]
+
|[mailto:Robyn.Latimer@Dal.Ca Robyn Latimer]
|Jun 2010
+
|13 April 2017
 
|-
 
|-
 
|Harvard
 
|Harvard
|Irreversible uptake of isoprene SOA; estimate of organic aerosol yields with satellite observations
+
|Particulate sulfur via sulfur-formaldehyde (hydroxymethane sulfonate) chemistry in clouds
|[mailto:emarais@seas.harvard.edu Eloise Marais]
+
|[mailto:jmoch@g.harvard.edu Jonathan Moch]
|27 April 2014
+
|14 Dec 2018
 
|-
 
|-
 
|MIT/Harvard
 
|MIT/Harvard
Line 96: Line 98:
 
|-
 
|-
 
|MIT
 
|MIT
|Examining decadal trends in organic aerosol
+
|Developing a simulation of bioaerosol
|[mailto:daridley@mit.edu David Ridley]
+
|[mailto:janssen@mit.edu Ruud Janssen]
|22 Apr 2015
+
|12 Apr 2017
 
|-
 
|-
 
|MIT
 
|MIT
|Investigating uncertainty on aerosol physical & optical properties on AOD, radiative effects, and PM2.5 from space estimates
+
|Investigating spread in carbonaceous aerosol impacts from fires due to emissions uncertainty
|[mailto:daridley@mit.edu David Ridley]
+
|[mailto:tscarter@mit.edu Tess Carter]
|22 Apr 2015
+
|29 Apr 2019
 
|-
 
|-
 
|MIT
 
|MIT
|Integrating the reactive carbon budget in GEOS-Chem
+
|Testing OA simulation schemes against suite of airborne observations
|[mailto:sarahsaf@mit.edu Sarah Safieddine]
+
|[mailto:sidhantp@mit.edu Sid Pai]
|22 Apr 2015
+
|29 Apr 2019
 
|-
 
|-
 
|MIT
 
|MIT
|Investigating Variability in Ammonia and Impacts on Inorganic PM formation
+
|Exploring aerosol simulation against remote observations from ATom
|[mailto:schiferl@mit.edu Luke Schiferl]
+
|[mailto:chloegao@mit.edu Chloe Gao]
|22 Apr 2015
+
|29 Apr 2019
|-
+
|MIT
+
|Investigating the impact of land use change on atmospheric composition
+
|[mailto:samsilva@mit.edu Sam Silva]
+
|22 Apr 2015
+
|-
+
|MIT
+
|Developing a simulation of brown carbon
+
|[mailto:xuanw12@mit.edu Xuan Wang]
+
|22 Apr 2014
+
|-
+
|MIT
+
|Developing a scheme to describe the aging of organic aerosol
+
|[mailto:qichen@mit.edu Qi Chen]
+
|8 Apr 2013
+
|-
+
|MIT/Dalhousie
+
|Developing a flexible land use module for GEOS-Chem and investigating the impacts of forest mortality on air quality in the United States
+
|[mailto:jgeddes@mit.edu Jeff Geddes]
+
|22 Apr 2015
+
|-
+
|MIT/CSU
+
|Characterizing the uncertainties in PM2.5 derived from satellite observations
+
|[mailto:bonne@atmos.colostate.edu Bonne Ford]
+
|22 Apr 2015
+
|-
+
|NASA LaRC
+
|transpacific transport of dust and sulfate; composition of Asian upper tropopause aerosol layer (ATAL).
+
|[mailto:t.d.fairlie@nasa.gov Duncan Fairlie]
+
|10 Apr 2013
+
|-
+
|SNU
+
|Implement the VBS method in GEOS-Chem for SOA
+
|[mailto:rjpark@snu.ac.kr Rokjin Park]<br>[mailto:cdswk@snu.ac.kr Dusung Jo]
+
|28 Sep 2012
+
|-
+
|SNU
+
|Siberian forest fire aerosols and climatic effects
+
|[mailto:rjpark@snu.ac.kr Rokjin Park]<br>[mailto:hb3099@hotmail.com Seungeun Lee]
+
|28 Sep 2012
+
 
|-
 
|-
 
|SUNY-Albany
 
|SUNY-Albany
Line 161: Line 123:
 
|-
 
|-
 
|SUNY-Albany
 
|SUNY-Albany
|Key processes controlling particle formation and growth in the atmosphere and implications
+
|Combining Measurements and Model Simulations of Particle Size Distributions to Improve Our Understanding of Particle Formation and Growth
 
|[mailto:fyu@albany.edu Fangqun Yu]<br>[mailto:gluo@albany.edu Gan Luo]
 
|[mailto:fyu@albany.edu Fangqun Yu]<br>[mailto:gluo@albany.edu Gan Luo]
|5 May 2015
+
|4 May 2017
 +
|-
 +
|SUNY-Albany
 +
|Long-Term Trend of Particle Number Concentrations: Controlling Processes and Implications
 +
|[mailto:fyu@albany.edu Fangqun Yu]<br>[mailto:gluo@albany.edu Gan Luo]
 +
|4 May 2017
 
|-
 
|-
 
|UW
 
|UW
Line 187: Line 154:
 
|-
 
|-
 
|L'Aquila
 
|L'Aquila
|Analysis of long-term aerosol optical properties
+
|Analysis of aerosol optical properties using FlexAOD
 +
|[mailto:gabriele.curci@aquila.infn.it Gabriele Curci]
 +
|16 Apr 2017
 +
|-
 +
|L'Aquila
 +
|AeroCom phase-3 intercomparisons: Biomass Burning, INSITU, Remote Sensing
 +
|[mailto:gabriele.curci@aquila.infn.it Gabriele Curci]
 +
|16 Apr 2017
 +
|-
 +
|L'Aquila
 +
|Direct and first indirect effect of anthropogenic dust
 
|[mailto:gabriele.curci@aquila.infn.it Gabriele Curci]
 
|[mailto:gabriele.curci@aquila.infn.it Gabriele Curci]
|05 May 2015
+
|16 Apr 2017
 
|-
 
|-
 
|NIA / NASA LaRC
 
|NIA / NASA LaRC
Line 232: Line 209:
 
|[[GEOS-Chem v11-01|v11-01]]
 
|[[GEOS-Chem v11-01|v11-01]]
 
|Jan 2017
 
|Jan 2017
|[[GEOS-Chem_species_database]]
+
|[[GEOS-Chem species database]]
 
|[[GEOS-Chem Support Team]]
 
|[[GEOS-Chem Support Team]]
  
Line 564: Line 541:
 
=== Sedimentation of stratospheric aerosols ===
 
=== Sedimentation of stratospheric aerosols ===
  
<span style="color:darkorange">'''''This update is slated for inclusion in [[GEOS-Chem v11-01]] or later.'''''</span>
+
<span style="color:darkorange">'''''This update is slated for inclusion in [[GEOS-Chem v11-02]].'''''</span>
  
 
'''''Daniel Jacob wrote:'''''
 
'''''Daniel Jacob wrote:'''''
  
:An issue has come up with our treatment of stratospheric aerosols. Seb Eastham applies sedimentation to sulfate and BC aerosols in his UCX code but he does not apply sedimentation to other aerosol species nor is his sedimentation code used in other GEOS-Chem simulations. It would be good to have consistency across aerosol types and across simulations (tropchem, RnPbBe...).  
+
:An issue has come up with our treatment of stratospheric aerosols. Seb Eastham applies sedimentation to sulfate and BC aerosols in his [[UCX_chemistry_mechanism|UCX code]] but he does not apply sedimentation to other aerosol species nor is his sedimentation code used in other GEOS-Chem simulations. It would be good to have consistency across aerosol types and across simulations (tropchem, RnPbBe...).  
  
 
--[[User:Melissa Payer|Melissa Sulprizio]] ([[User talk:Melissa Payer|talk]]) 16:38, 20 August 2015 (UTC)
 
--[[User:Melissa Payer|Melissa Sulprizio]] ([[User talk:Melissa Payer|talk]]) 16:38, 20 August 2015 (UTC)

Revision as of 16:16, 28 July 2020

All users interested in the GEOS-Chem aerosol simulations are encouraged to subscribe to the aerosols email list (click on the link in the contact information section below).

Information on existing projects and future developments in aerosols will be posted here. We encourage user groups to keep their information up-to-date.

Contact information

Aerosols Working Group Co-Chairs
Aerosols Working Group email list geos-chem-aerosols [at] g.harvard.edu
To subscribe to email list Either
  • Send an email to geos-chem-aerosols+subscribe [at] g.harvard.edu

Or

To unsubscribe from email list Either
  • Send an email to geos-chem-aerosols+unsubscribe [at] g.harvard.edu

Or

--Bob Y. (talk) 16:34, 21 August 2015 (UTC)

Current GEOS-Chem Aerosol Projects, alphabetized by institution (please add yours!)

User Group Description Contact Person Date Added
Beijing/SUNY-Albany/L'Aquila Representing GEOS-Chem in the AEROCOM intercomparisons May Fu
Fangqun Yu
Gabriele Curci
28 Jul 2010
Columbia University Multiphase SOA formation in GEOS-Chem Faye McNeill 23 Apr 2015
Dalhousie Decadal trends in PM2.5 Chi Li 13 Apr 2017
Dalhousie Arctic aerosol number distributions Betty Croft 13 Apr 2017
Dalhousie Arctic black carbon Junwei Xu 13 Apr 2017
Dalhousie Metals in PM2.5 Junwei Xu 13 Apr 2017
Dalhousie Interpreting SPARTAN to understand PM2.5 chemical composition Crystal Weagle 13 April 2017
Dalhousie Aerosol mass scattering efficiency Robyn Latimer 13 April 2017
Harvard Particulate sulfur via sulfur-formaldehyde (hydroxymethane sulfonate) chemistry in clouds Jonathan Moch 14 Dec 2018
MIT/Harvard Implementing MOSAIC aerosols into GEOS-Chem Sebastian Eastham 11 May 2015
MIT Developing a simulation of bioaerosol Ruud Janssen 12 Apr 2017
MIT Investigating spread in carbonaceous aerosol impacts from fires due to emissions uncertainty Tess Carter 29 Apr 2019
MIT Testing OA simulation schemes against suite of airborne observations Sid Pai 29 Apr 2019
MIT Exploring aerosol simulation against remote observations from ATom Chloe Gao 29 Apr 2019
SUNY-Albany Effects of size-resolved aerosol microphysics on aerosol radiative forcing and chemistry Fangqun Yu
Gan Luo
5 May 2015
SUNY-Albany Combining Measurements and Model Simulations of Particle Size Distributions to Improve Our Understanding of Particle Formation and Growth Fangqun Yu
Gan Luo
4 May 2017
SUNY-Albany Long-Term Trend of Particle Number Concentrations: Controlling Processes and Implications Fangqun Yu
Gan Luo
4 May 2017
UW Sources of sea salt aerosol in polar regions: Blowing snow and Frost flowers Jiayue Huang
Lyatt Jaeglé
22 Apr 2015
UW Sea salt aerosols and their effects on global tropospheric chemistry Lyatt Jaeglé
Jiayue Huang
22 Apr 2015
UW Sulfate formation via oxidation of SO2 by hypohalous acids (e.g., HOBr) Becky Alexander
Qianjie Chen
22 April 2015
University of Wollongong Characterizing interannual variability of Australian dust export and deposition Jesse Greenslade
Jenny Fisher
23 April 2015
L'Aquila Analysis of aerosol optical properties using FlexAOD Gabriele Curci 16 Apr 2017
L'Aquila AeroCom phase-3 intercomparisons: Biomass Burning, INSITU, Remote Sensing Gabriele Curci 16 Apr 2017
L'Aquila Direct and first indirect effect of anthropogenic dust Gabriele Curci 16 Apr 2017
NIA / NASA LaRC Radiative effects of aerosols versus clouds on key tropospheric oxidants Hongyu Liu 5 May 2015
NIA / NASA LaRC Sources and variability of tropospheric aerosols over the North Atlantic Hongyu Liu 5 May 2015
UCLA Improve black carbon simulations in GEOS-Chem; BC aging microphysics; BC-snow interaction; BC radiative properties; Cenlin He 8 May 2015
UCLA Black carbon emissions, simulations and its radiative effects over the Arctic Ling Qi 8 May 2015
UCLA Improve aerosol wet scavenging and dry deposition in GEOS-Chem Ling Qi
Cenlin He
8 May 2015

Recent GEOS-Chem updates related to aerosols

We have added the following updates pertaining to aerosols to recent GEOS-Chem versions:

Version Released Description Contact
v11-01 Jan 2017 GEOS-Chem species database GEOS-Chem Support Team
v11-01 Jan 2017 Update DMS climatology to Lana Tom Breider (Harvard)
v11-01 Jan 2017 Impaction scavenging for hydrophobic BC Qiaoqiao Wang (Max Planck Institute)
v11-01 Jan 2017 Homogeneous IN removal Qiaoqiao Wang (Max Planck Institute)
v11-01 Jan 2017 Density of OA update Melanie Hammer (Dalhousie)
Eloïse Marais (Harvard)
v11-01 Jan 2017 Improved dust size distribution scheme Li Zhang (Colorado U.)
Daven Henze (Colorado U.)
v11-01 Jan 2017 Addition of BrC UV absorption to address impacts on OH
  • This feature is optional (default off)
Melanie Hammer (Dalhousie)
v11-01 Jan 2017 Acid uptake on dust aerosols
  • This feature is optional (default off)
T. Duncan Fairlie (NASA/LARC)
v11-01 Jan 2017 Now treat DST2-DST4 as coarse mode in wet scavenging T. Duncan Fairlie (NASA/LARC)
v11-01 Jan 2017 Online emission of marine primary organic aerosol (POA)
  • This feature is optional (default off)
Brett Gantt (NCSU)
Matthew Johnson (NASA Ames)
v11-01 Jan 2017 PM2.5 diagnostic GEOS-Chem Support Team
v10-01 June 2015 The HEMCO emissions component now handles all emissions. Emissions for Sea salt aerosols and Mineral dust aerosols are now coded as HEMCO extensions. Christoph Keller (fmr Harvard)
GCST
v10-01 June 2015 Integrating a radiative transfer model into GEOS-Chem David Ridley (MIT)
v9-02 Mar 2014 Expansion of SOA option (SOA + nonvolatile POA) Havala Pye (formerly Caltech, now EPA)
v9-02 Mar 2014 Cloud water pH for sulfate formation Becky Alexander (U. Washington)
v9-02 Mar 2014 Better representation of OC growth with RH and correction to sulfate optics David Ridley (MIT)
Randall Martin (Dalhousie)
v9-02 Mar 2014 Bug fix in jv_spec_aod.dat for dust species Gabriele Curci (U. L'Aquila)
v9-02 Mar 2014 Update molecular weight of sea salt tracers Colette Heald (MIT)
v9-01-03 Sep 2012 Dust submicron size distribution for optics Dave Ridley, CSU
v9-01-03 Sep 2012 Modifications to sea salt emissions and dry deposition Lyatt Jaegle and Becky Alexander, U Washington
v9-01-03 Sep 2012 Various updates to wet deposition to impact aerosol simulation, see Wet Deposition Further Updates Qiaoqiao Wang, Harvard
v9-01-02 Nov 2011 Implementation of APM aerosol microphysics model Fangqun Yu, SUNY Albany
Gan Luo, SUNY Albany
v9-01-02 Nov 2011 Removing inconsistencies in aerosol diagnostics Sungshik Patrick Kim, Harvard
v9-01-02 Nov 2011 Updated aerosol dry deposition velocities over snow and ice surfaces Jenny Fisher, Harvard
v9-01-02 Nov 2011 Added seasonality to Streets NH3 emissions over Asia Jenny Fisher, Harvard
v9-01-01 Jun 2011 FlexAOD post-processing tool for the community Gabriele Curci, University of l'Aquila

--Colette Heald 16:14, 8 May 2015 (EST)

On-going Aerosol Working Group Developments

We plan to add these aerosol-related updates to GEOS-Chem in the next few releases:

Update Authors Planned release
Simplified description of uptake of SO2, nitric acid and sulfuric acid on mineral dust Duncan Fairlie, Langley
  • Delivered to GCST
  • Slated for inclusion into v10-02

--Bob Y. 15:05, 25 April 2014 (EDT)

Future Development Priorities

These are topics which were raised at IGC6 as future updates & development priorities for GEOS-Chem which have not yet been incorporated into the standard code:

Update Authors Priority
Addition of effective wind speed to met fields for consistent resolution dust/sea salt emissions Jeff Pierce (CSU)
David Ridley (MIT)
GCST
medium
Addition of deposition observations to aerosol benchmark Colette Heald (MIT) low
dust simulation expansion (tagged simulation, oxalate, P, Fe chemistry) Matthew Johnson (NC State) low
DMS oxidation scheme updating TBD low
Investigation of how aerosol water is treated in PM comparisons (ISORROPIA vs. hygroscopic growth curves) TBD low
APM capability for nested grid Fangqun Yu (SUNY Albany)
TOMAS capability for nested grid Jeff Pierce (Dalhousie)
Tagged sulfate and nitrate simulation Becky Alexander (U. Washington)
Improved dust simulation in nested-grid model Rokjin Park (Seoul National University)

--Bob Y. 15:04, 25 April 2014 (EDT)

Aerosol optical properties

Please visit our aerosol optical properties wiki page for more information about:

  1. Description of GEOS-Chem aerosol optics
  2. Aerosol optical properties update for v8-03-01
  3. Aerosol optical properties at high spectral resolution

Here is a list of updates that were considered when this was last reviewed in 2010 (2, 4 and 5 are included in the v8-03-01 update):

Proposed Update (include information on old values if known) Reference Contact
Account for absorption in the 300-500 nm range by OC, which may be greater than presently treated. Currently we have OC ss albedo in this range being > 0.95, though it may be lower than 0.85. Barnard et al, 2008 Daven Henze
Expand Mie table to include more wavelengths. Most literature values compare at 500 or 550 nm. Current GC lookup table includes 400, then 600. A wider range is also necessary for integrating to get total SW flux; something greater than 1500 perhaps? Martin et al, 2004 Daven Henze
Consider using the water content of the fine mode aerosol calculated in the aerosol thermodynamic module rather than hygroscopic growth curves to estimate wet particle effective radius. N/A Daven Henze
Consider changing the "default" AOD diagnostic wavelength from 400 nm to 550nm (for matching with MODIS & CALIPSO) N/A Colette Heald
Treat the radius of hydrophylic organic aerosol similar to that of sulfate. This is based on observations that organic aerosol and sulfate are often internally mixed. Should we consider something similar for black carbon? Rupkheti et al., 2007 Randall Martin


Additional updates to aerosol optics since v8-03-01:

Update Version Number Contact
Overhaul of AOD diagnostics v9-01-02 Patrick Kim (Harvard)
Dust submicron size distribution for optics v9-01-03 David Ridley (CSU, now MIT)
Bug fix in jv_spec_aod.dat for dust species v9-02 Gabriele Curci (l'Aquila)
Update jv_spec.dat and jv_spec_aod.dat with better representation of OC growth with RH and correction to sulfate optics v9-02 Dave Ridley (MIT) and Randall Martin (Dalhousie)

Related Topics

Issues / Topics for Discussion

Organic Aerosol Density (v.10-01)

This update was validated with 1-month benchmark simulation v11-01b and 1-year benchmark simulation v11-01b-Run0. This version was approved on 19 Aug 2015.

The organic aerosol density (1800 kg/m3) for calculating aerosol optical depth in aerosol_mod.F, based on Hess et al. (1997), is outdated and not representative of organic aerosols. The value is for a generic water soluble aerosol that could include sulfate, nitrate, SOA etc. Instead, we suggest GEOS-Chem users replace this with a density of 1300 kg/m3. There are numerous references that corroborate this value, or a value between 1200-1400 kg/m3. There are too many to list, but see for example p. 5174-5175 of Hallquist et al., ACP, 2007.

To make the change in aerosol_mod.F simply replace MSDENS(3) = 1800 with MSDENS(3) = 1300 in the RDAER subroutine. This leads to a 40% increase in organic carbon AOD.

Update by Eloise Marais (Harvard) and Melanie Hammer (Dalhousie).

--Emarais 21:06, 6 May 2015 (EDT)

Sedimentation of stratospheric aerosols

This update is slated for inclusion in GEOS-Chem v11-02.

Daniel Jacob wrote:

An issue has come up with our treatment of stratospheric aerosols. Seb Eastham applies sedimentation to sulfate and BC aerosols in his UCX code but he does not apply sedimentation to other aerosol species nor is his sedimentation code used in other GEOS-Chem simulations. It would be good to have consistency across aerosol types and across simulations (tropchem, RnPbBe...).

--Melissa Sulprizio (talk) 16:38, 20 August 2015 (UTC)