
GCHP v11-02 Tutorial

Lizzie Lundgren
GEOS-Chem Support Team

geos-chem-support@as.harvard.edu
June 2018

Overview

1) What is GCHP and why use it?
2) Common Misconceptions
3) Useful Tips
4) Basic Tutorial
5) Introduction to GCHP Source Code
6) Resources

What is GCHP and why use it?

• GCHP features the same science as GEOS-Chem using
the standard "classic" capability except:
1. It operates on a cubed-sphere grid
2. It is parallelized using a message-passing interface (MPI)

• GCHP improves upon GCC by:
– Enabling more accurate transport
– Providing efficient scaling making finer resolution global

simulations possible

Common Misconceptions about GCHP

• I need a high performance compute cluster for GCHP
– Not true! You can run GCHP on as little as one machine with 6 cores.

• I can only perform high-resolution runs with GCHP
– Not true! GCHP can run at c24 resolution which is the cubed sphere

equivalent of 4°x5°.

• I need met fields at the same resolution as my run
– Not true! You may use GCHP with 2°x2.5° meteorology for up to at least

c180 (0.5° res), although we recommend keeping the met resolution to no
more than twice your run resolution equivalent to ensure quality output. If the
met wind fields are too coarse relative to your internal resolution then polar
divergence will occur.

Useful Tip #1: Grid Resolutions

Standard lat-lon resolution Approximate CS equivalent(s)

4° x 5° c24
2° x 2.5° c48

1° x 1.25° c90
0.5° x 0.625° 1 c180

0.25° x 0.3125° 2 c360
0.125° x 0.15625° c720 3

1 Native resolution of MERRA-2 product from GMAO
2 Native resolution of GEOS-FP product from GMAO
3 Native cubed-sphere resolution of GEOS-5

• Cubed-sphere resolution “cN” means each of the six faces are
divided into N x N grid cells.

• An easy rule-of-thumb for resolution mapping is to divide 90 by N
to determine the approximate lat-lon degree resolution.

Useful Tip #2: Resource Allocation

• Number of nodes and number of faces are independent
• Number of cores and number of faces are NOT independent
• Total number of cores must be divisible by number of faces (6)!
• How does it work?

– Each NxN face is divided into NX x NY/6 segments, each comprised of
approximately N/NX x N*6/NY cubed-sphere grid cells.

– Each segment is processed by a single core
– NX * NY must therefore equal the total number of cores
– NX * NY/6 would ideally be square to minimize required communication

between cores

• GCHP reads NX and NY from config file ‘GCHP.rc’.
• You should manually define them in script ‘runConfig.sh’ which

will apply many user-configured parameters at run-time.
• More on this topic later in the presentation.

GCHP Tutorial

1. Download Source Code

2. Check Your Version
3. Create a Run Directory

4. Set Link to Source Code

5. Load Environment
6. Compile GCHP

7. Configure Run Settings

8. Run a Simulation
9. Analyze Output Data

10.Reuse a Run Directory

Step 1: Download Source Code

• You need two git repositories (repos) for source code:
1. GEOS-Chem “classic” (GCC) code as your main directory
2. GCHP code as a subdirectory within it

• Clone the repos from Github
git clone git@github.com:geoschem/geos-chem.git Code.gchp

cd Code.gchp

git clone git@github.com:geoschem/gchp.git GCHP

cd GCHP

• You may also fork the repositories and clone from your own
Github account. This will enable you to do pull requests to submit
model updates and bug fixes to the GEOS-Chem Support Team.

mailto:git@github.com:GCST/geos-chem.git
mailto:git@github.com:GCST/gchp.git
mailto:git@github.com:GCST/gchp.git
mailto:git@github.com:GCST/gchp.git

• You can checkout any version from any of the git repos
• You must checkout compatible versions to compile and run
• The master branches will always be compatible, and will always

be set to the last benchmarked version
• Check your branch from within each repo:

– List branches with ‘git branch’. The branch you are on has an asterisk.

• To get an older version,
– List tag names with ‘git tag’
– Checkout a tag with ‘git checkout tags/tagname’

• Warnings:
– Tag names may be slightly different in each repo
– You are in “detached HEAD” mode when you checkout a tag. Create a new

branch before editing files: ‘git checkout –b newbranchname’

• New to git? Git tutorials abound online. Or, check out the GCST
git presentation posted on the GCHP wiki home page.

Step 2: Check Your Git Versions

• You need one git repo for creating run directories

• Clone the repo from Github
git clone git@github.com:geoschem/geos-chem-unittest.git UT

• Checkout the version that matches your source code
• To create a run directory, modify UT/perl/CopyRunDirs.input:

• Like GCC, each simulation has a different run directory
• Unlike GCC, simulation resolution is configurable at run-time

Step 3: Create a Run Directory

Uncomment simulation(s) of interest

Set start and end dates

Set target directory

mailto:git@github.com:GCST/geos-chem.git

• Run directories available in v11-02:
1. Standard simulation

• Use for full chemistry science simulations
• Initial restart files are for July 1 and do not include HEMCO restart variables

2. Rn-Pb-Be7 simulation
• Use for Rn-Pb-Be7 and passive tracer simulations
• Initial restart files are for January 1 and do not include HEMCO restart variables

3. Benchmark simulation
• Use for benchmarking only (turns on both complex and simple SOA)
• Initial restart files are for July 1 and do include HEMCO restart variables

• All run directories include symbolic links to initial restart files for
five resolutions: c24, c48, c90, c180, and c360.

• Like GCC, you should spin up the model to create your own
restart files for production runs

• Unlike GCC, HEMCO restart variables are output in the same
restart file as chemical species

Available GCHP Run Directories

• README
• Data files (*.dat)
• Config files (*.rc, *.geos, *.nml)
• Utility scripts

– setCodeDir
– build.sh
– runConfig.sh
– gchp.run

GCHP Standard Run Directory
• Makefile
• Symbolic links:

– Restart files
– Input data directories
– Regridding files (tile files)

• Subdirectories
• 2

– Env file examples
– Output storage
– Run script examples

• Sample environment setup files are stored in the
bashrcSamples subdirectory

• The sample files provided are mostly custom for the Harvard
Odyssey compute cluster, but the ‘standalone’ file is more generic

• Examples for different compilers (ifort15, ifort17, and GNU) and
MPI (OpenMPI and MVAPICH2) are included

• Use these files as examples to build ones for your own system

• Source your environment file prior to compiling and running

• You must use the same libraries during run-time that used during
compilation

• Sourcing an env file is included in the run script ‘gchp.run’ but you
must manually update its name to your own file

GCHP Environment Files:
bashrcSamples Subdirectory

• In GCHP Only:
– Cap.rc

• start/end dates, and more
– ExtData.rc

• external data information
– fvcore_layout.rc

• transport-related settings
– GCHP.rc / input.nml

• general settings
– HISTORY.rc

• output data settings

GCHP Run Config Files
• In GCHP and GCC:

– HEMCO_Config.rc
– HEMCO_Diagn.rc
– input.geos

• TIPS:
– Not all fields in input.geos and

HEMCO_Config.rc are used
– Some settings must be set in multiple files

(set once in runConfig.sh instead)
– None of these settings require recompiling

• runScriptSamples/
– SLURM:

• gchp_slurm.run

– Sun Grid Engine (SGE):
• gchp_gridengine.run

– Use these as examples for
other job schedulers

• gchp.run
– Copy of gchp_slurm.run

• OutputDir/
– Where all GCHP diagnostic output

configured in HISTORY.rc are
saved

– Restart file is NOT saved here
– Do not remove or rename! GCHP will

hang without an error message if
OutputDir is missing.

GCHP Run Scripts
and Output Directory

• runConfig.sh
– single location to update

common run settings
– overwrites config files
– executed in run scripts

• setCodeDir
– creates symbolic link to

source code path
– Pass full path (without

links) as an argument

• build.sh
– cleans and compiles code
– executed in Makefile

GCHP Utility Scripts

> 90% of GCHP errors are due to incorrect or
inconsistent config file settings. Use bash script
runConfig.sh to avoid common errors.

Step 4: Set Link to Source Code

• GCHP uses a symbolic link to source code called CodeDir
• Run bash shell script setCodeDir to set symbolic link:

• Things to note:

– Specify the path to the GEOS-Chem top-level directory, not the GCHP
subdirectory

– Do not include symbolic links in your source code path
– Unlike GCC, do not edit the Makefile with your source code path

Step 5: Load GCHP Environment

• Set up your environment prior to compiling and/or running
• On Odyssey:

• Elsewhere:
– Create a .bashrc file based on sample files in the run directory
– Using the libraries above is recommended but other combos are possible

• OpenMPI
• Intel MPI
• Gfortran
• Other NetCDF library versions

Step 6: Compile GCHP

• Like GCC, compile GCHP from the run directory using the Makefile

• First time compilation (30-60 min): make clean_compile
– Warnings, error messages, and pauses are normal
– Signs of successful compilation:

• “### GCHP compiled Successfully ###”

• The following files exist:
– GCHP/ESMF/esmf.install
– GCHP/FVdycoreCubed_GridComp/fvdycore.install
– GCHP/Shared/mapl.install

• Subsequent compilation: make clean_standard
– For updates to GC base code or GCHP top-level directory
– Not for updates to GCHP subdirectories (e.g. GCHP/Shared)

Step 7: Configure Run Settings

• Use utility bash script runConfig.sh for select config settings:
– Compute resources (e.g. # nodes and cores)
– Internal grid resolution
– Restart file
– Simulation start/end times
– Output diagnostic file frequency, duration, and mode

• e.g. hourly (frequency) that is time-averaged (mode) and contained in daily files (duration)

– Component on/off switches, including mixing scheme
– Time-step intervals
– Debug level for MAPL

• Manually change individual config files for all other settings
• Important things to understand about runConfig.sh

– Run scripts execute runConfig.sh prior to executing geos
– It overwrites input.geos and *.rc files (BEWARE!!!)
– Does not updates HEMCO_Config.rc or Ext_Data.rc (yet)

runConfig.sh:
Default Settings Part 1

See Useful Tip #2 at start of slides.
Always check that your resources here
match your run script settings!

Set restart filename if not using symbolic links included in the run directory

Set simulation resolution

runConfig.sh:
Default Settings Part 2

Set simulation start and end times.
Set duration to the difference, or
multiples of the difference if doing
segmented runs.

Set cubed-sphere file duration, data
frequency, and mode, either “’time-
averaged’” or “’instantaneous’”. These
update the “center” collection in
HISTORY.rc. Ignore the “ll_” options.

Set high-level input.geos options

For MAPL debugging, set level as high
as 20. Be aware this will come at great
performance cost!

Step 8: Run GCHP
(single node)

• Two run scripts are provided as examples of how to run GCHP:

• Both run runConfig.sh prior to executing geos
• runConfig.sh will exit with an error if your settings do not make

sense or if your restart file does not exist, thereby preventing
GCHP from starting and hanging

• It is up to you, however, to check that your compute resource
settings in your run script match those in runConfig.rc

• GCHP standard output is sent to a log called gchp.log
• You may change the log name in your run script.

Step 9: Analyze Output

• All GCHP output is in netCDF-4 format
• Two data outputs:

– Restart file
• Stored in top-level of run directory
• Filename: gcchem_internal_checkpoint_c24.nc (configured in GCHP.rc)
• Cubed-sphere grid

– One or more diagnostic files
• Output files are stored in OutputDir
• File format: GCHP.{collection}.YYYYMMDD.nc4
• Different files for each collection
• Collections configured in HISTORY.rc

• Regrid from cubed sphere to lat-lon:
– CSRegridTool (FORTRAN): https://bitbucket.org/sdeastham/csregridtool
– CSRegrid (Matlab): https://bitbucket.org/gcst/csgrid

• Python tools are also available. Contact GCST for info.

https://bitbucket.org/sdeastham/csregridtool
https://bitbucket.org/gcst/csgrid

• ‘make cleanup_output’:
• Will clean your run directory (remove all output and logs)
• Will NOT delete your executable and compile log

• You can also reuse your run directory without cleaning it. Beware
that previous run files will be over-written.

• To change meteorology resolution:
– Update paths in ExtData.rc
– Change MetDir symbolic link target

• To change run resolution:
– update runConfig.sh

• To change # of cores and/or # of nodes:
– Remember to update runConfig.sh as well as your run script
– Choose NX and NY such that NX by NY/6 is roughly square
– See next slide for an example

• See runConfig.sh for other run-time settings to play with

Step 10: Reuse a Run Directory

GCHP with Multiple Nodes
• Example 1: 24 cores across 2 nodes

– Run script:

– runConfig.sh:

• Example 2: 48 cores across 3 nodes
– Run script:

• –n 48
• –N 3

– runConfig.sh:
• NUM_NODES=3
• NUM_CORES_PER_NODE=16
• NY=12
• NX=4

GCHP Source Code:
ESMF, MAPL, FVdycore

ESMF and transport directories: these are compiled
once and then you shouldn’t need to touch them

MAPL is stored here. It is also compiled once. Most
run directory issue errors will point you here.

Especially here.

GCHP Source Code:
MAPL_Base

Error messages
may lead you
here…

Resource setup
or time issues

Input data
issues

Output data
issues

Tile file issues
(lat-lon <-> CS)

Review your run directory setup before trying to change MAPL code!

Resources

• GCHP Links:
– Main Wiki Page
– Online Tutorial
– v11-02: new features, benchmarks, open and resolved issues
– Working Group and Users

• Other Useful Links:

– Interactive construction of a cubed-sphere grid
– GMAO MAPL User’s Guide (info may be outdated)
– GEOS-5 wiki page for ExtData (info may be outdated)

http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_HP
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_HP
http://wiki.seas.harvard.edu/geos-chem/index.php/Getting_Started_With_GCHP
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_HP_v11-02
http://acmg.seas.harvard.edu/geos/cubed_sphere/CubeSphere_step-by-step.html
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_High_Performance_Working_Group
http://acmg.seas.harvard.edu/geos/cubed_sphere/CubeSphere_step-by-step.html
https://geos5.org/wiki/images/f/fa/MAPL_UsersGuide.pdf
https://geos5.org/wiki/index.php?title=Using_the_ExtData_component

	GCHP v11-02 Tutorial
	Overview
	What is GCHP and why use it?
	Common Misconceptions about GCHP
	Useful Tip #1: Grid Resolutions
	Useful Tip #2: Resource Allocation
	GCHP Tutorial
	Step 1: Download Source Code
	Step 2: Check Your Git Versions
	Step 3: Create a Run Directory
	Available GCHP Run Directories
	GCHP Standard Run Directory
	GCHP Environment Files: bashrcSamples Subdirectory
	GCHP Run Config Files
	GCHP Run Scripts�and Output Directory
	GCHP Utility Scripts
	Step 4: Set Link to Source Code
	Step 5: Load GCHP Environment
	Step 6: Compile GCHP
	Step 7: Configure Run Settings
	runConfig.sh:�Default Settings Part 1
	runConfig.sh:�Default Settings Part 2
	Step 8: Run GCHP�(single node)
	Step 9: Analyze Output
	Step 10: Reuse a Run Directory
	GCHP with Multiple Nodes
	GCHP Source Code: �ESMF, MAPL, FVdycore
	GCHP Source Code: �MAPL_Base
	Resources

