
Getting Started with
High Performance GEOS-Chem

Lizzie Lundgren
GEOS-Chem Support Team

geos-chem-support@as.harvard.edu
June 2017

Overview

1) What is GCHP and why use it?
2) Common Misconceptions
3) Useful Tips
4) Basic Tutorial
5) Introduction to GCHP Source Code
6) Resources

What is GCHP and why use it?

• GCHP features the same science as GEOS-Chem using
the standard "classic" capability except:
– It operates on a cubed-sphere grid
– It is parallelized using a message-passing interface (MPI)

implementation

• GCHP improves upon GCC by:
– Enabling more accurate transport
– Providing efficient scaling across many cores and multiple nodes

Common Misconceptions about GCHP

• I need a high performance compute cluster for GCHP
– Not true! You can run GCHP on as little as one machine with 6 cores.

• I can only perform high-resolution runs with GCHP
– Not true! GCHP can run with c24, the cubed-sphere equivalent of 4°x5°.

• I need met fields at the same resolution as my run
– Not true! GCHP can use 2°x2.5° met fields for up to at least c180 (0.5° res),

although we recommend keeping the met resolution to no more than twice
your run resolution equivalent to ensure quality output. If the met wind fields
are too coarse relative to your internal resolution then polar divergence will
occur.

Useful Tip #1: Grid Resolutions

Standard lat-lon resolution Approximate CS equivalent(s)

4° x 5° c24
2° x 2.5° c48, c45

1° x 1.25° c96, c90
0.5° x 0.625° 1 c192, c180

0.25° x 0.3125° 2 c384, c360
0.125° x 0.15625° c720 3

1 Native resolution of MERRA-2 product from GMAO
2 Native resolution of GEOS-FP product from GMAO
3 Native cubed-sphere resolution of GEOS-5

• Cubed-sphere resolution “cN” means each of the six faces are
divided into N x N segments.

• An easy rule-of-thumb for resolution mapping is to divide 90 by N
to determine the approximate lat-lon degree resolution.

Useful Tip #2: Resource Allocation

• Number of nodes and number of faces are independent
• Number of cores and number of faces are NOT independent
• Total number of cores must be divisible by 6!
• How does it work?

– Each NxN face is divided into NX x NY/6 segments, each comprised of
approximately N/NX x N*6/NY cubed-sphere grid cells.

– Each segment is processed by a single core
– NX * NY must therefore equal the total number of cores
– NX * NY/6 would ideally be square to minimize required communication

between cores

• NX and NY are manually set in config file GCHP.rc but are over-
written by NX and NY of your choosing in utility script
runConfig.rc. Setting them will soon be automatic.

• More on this topic later in the presentation.

GCHP Tutorial

1. Downloading Source Code

2. Create a Run Directory
3. Load Environment

4. Compiling GCHP

5. Configure Run
6. Run a Simulation

7. Analyze Output Data

8. Reusing a Run Directory

Step 1: Download Source Code

• You need two repositories for GCHP:
1. GEOS-Chem “classic” (GCC) code as your main directory
2. GCHP code as a subdirectory within it

• Use the GC and GCHP master branches

git clone -b master https://bitbucket.org/gcst/gc_bleeding_edge Code.v11-02_gchp

cd Code.v11-02_gchp

git clone -b master https://bitbucket.org/gcst/gchp GCHP

Step 2: Create a Run Directory

• Download a GCHP run directory from GEOS-Chem Unit Tester
• Use the UT_Bleeding_Edge master branch

– If you have the repository already, check out the branch:
• git pull
• git checkout master

– If you do not have the repository:
• git clone -b master https:/bitbucket.org/gcst/ut_bleeding_edge UT

• Run directory set up for c24 (~4°x5°), 1 hour, standard simulation
• To download, modify UT/perl/CopyRunDirs.input:

Uncomment
(delete)

Ignore
(not yet functional)

1. Config files
2. Standard sim *.dat files
3. Sample .bashrc files
4. Sample run scripts
5. Utility bash scripts
6. Output data subdirectory
7. README
8. Makefile
9. Files to ignore:

– getRunInfo
– input.nml

– HEMCO restart file (not used by GCHP)

GCHP Run Directory:
Out-of-the-box Contents

WARNING: do not use the GCHP run directory out-of-the-box!
Initial setup is required (more on this later).

Three examples provided:

• For Odyssey (Harvard):
– ifort15, MVAPICH2
– gfortran, MVAPICH2

• For Glooscap (Dalhousie):
– ifort13, OpenMPI

• Other Systems
– Use these as examples to

build your own

GCHP Run Directory:
.bashrc Files

• GCHP Specific:
– Cap.rc

• start/end dates, and more

– ExtData.rc
• external data information

– fvcore_layout.rc
• transport-related settings

– GCHP.rc
• general settings

– HISTORY.rc
• output data settings

• Same as GCC:
– input.geos
– HEMCO_Config.rc

GCHP Run Directory:
Config Files

• WARNINGS:
– Not all fields in input.geos and HEMCO_Config.rc are used.
– Some settings must be set in multiple files (use runConfig.sh for sanity!!!)

> 90% of GCHP errors are due to incorrect or
inconsistent config file settings. Use bash script
runConfig.sh to avoid common errors.

Two examples provided:

• For Odyssey (Harvard):
– GCHP_slurm.run

• For Glooscap (Dalhousie):
– GCHP_gridengine.run

• Other Systems
– Use these as examples to

build your own

GCHP Run Directory:
Run Scripts

• OutputDir/
– All GCHP output data

configured in HISTORY.rc
are saved here

– Restart file is not saved
here

– Do not remove or rename!
GCHP will hang without a
helpful error message

GCHP Run Directory:
Output Data Storage

• initialSetup.sh
– creates symlinks to data
– IMPORTANT: run once

after rundir download
• build.sh

– cleans and compiles code
– executed in Makefile

• runConfig.sh
– single location to update

common run settings
– overwrites config files
– executed in run scripts

GCHP Run Directory:
Utility Scripts

Step 3: One-time Run Directory Setup

• One-time setup of your run directory after downloading is required
• Run bash shell script initialSetup.sh to set symbolic links:

– You will be prompted for your source code location (set as symlink CodeDir)
– The rest is automatically set for you if on Odyssey (do manually elsewhere)

• ChemDataDir – ExtData/CHEM_INPUTS
• MainDataDir – ExtData/HEMCO
• MetDir – meteorology data
• TileFiles – ExtData/GCHP/TileFiles
• initial_GEOSChem_rst.c24_standard.nc – GCHP restart file at c24

(cubed-sphere equivalent of 4°x5°)

• Things to note:
– Use path for your GC base code and not the GCHP subdirectory
– Do not include symbolic links in your source code path
– Unlike GCC, do not edit the Makefile with your source code path
– Config files assume MetDir points to 2°x2.5° GEOS-FP meteorology

• Following initial setup, your run directory should look like this:

Step 3: One-time Run Directory Setup

Step 4: Load GCHP Environment

• Set up your environment prior to compiling and/or running
• On Odyssey:

• Elsewhere:
– Create a .bashrc file based on sample files in the run directory
– Using the libraries above is recommended but other combos are possible

• OpenMPI or Intel MPI
• Gfortran
• Other NetCDF library versions

Step 5: Compile GCHP

• Like GCC, compile GCHP from the run directory using the Makefile

• First time compilation (30-60 min): make clean_compile
– Warnings, error messages, and pauses are normal
– Signs of successful compilation:

• “### GCHP compiled Successfully ###”

• The following files exist:
– GCHP/ESMF/esmf.install
– GCHP/FVdycoreCubed_GridComp/fvdycore.install
– GCHP/Shared/mapl.install

• Subsequent compilation: make clean_standard
– For updates to GC base code or GCHP top-level directory
– Not for updates to GCHP subdirectories (e.g. GCHP/Shared)

Step 6: Configure Run

• Use utility bash script runConfig.sh for select config settings

• If there is a setting you don’t see in runConfig.sh (e.g. list of
variables to include in output file set in HISTORY.rc) then you
need to manually change it in the appropriate config file.

• Things to note about using runConfig.sh
– Overwrites input.geos and *.rc files
– Sample run scripts execute runConfig.sh prior to executing geos
– Run scripts send summary of runConfig.sh settings to runConfig.log
– HEMCO_Config.rc settings are not currently in runConfig.sh
– Currently in development and design may change in the future!

runConfig.sh:
Default Settings Part 1

See Useful
Tip #2 at
start of slides

Output file information. “cs”
is for cubed-sphere output
file and “ll” is for lat-lon.
These are the “center” and
“regrid” collections in
HISTORY.rc respectively.

runConfig.sh:
Default Settings Part 2

Starting here, the rest of the options in
runConfig.sh (not all shown) overwrite
settings in input.geos only

Step 7: Run GCHP
(single node)

• Submit GCHP to slurm using a run script
• The most basic test is 6 cores on 1 node:

• This requires the same compute resources set in runConfig.rc

Step 8: Analyze Output

• All GCHP output is in netCDF-4 format (hurray!)
• Three outputs:

– Restart file
• Stored in top-level of run directory
• Filename: -gcchem_internal_checkpoint_c24.nc (configured in GCHP.rc)
• Cubed-sphere grid

– OutputDir/GCHP.regrid.YYYYMMDD.nc4
• “regrid” collection configured in HISTORY.rc
• Analogous to ND45 in GCC (species concentration diagnostic on lat/lon grid)
• Not conservatively regridded from cubed-sphere and so we do not recommend

using this data
– OutputDir/GCHP.center.YYYYMMDD.nc4

• “center” collection configured in HISTORY.rc
• On the cubed-sphere grid at the run resolution and thus superior to “regrid”
• Can be regridded from cubed-sphere to lat/lon using either of the following tools:

– CSGrid Matlab package (https://bitbucket.org/gcst/csgrid)
– GCPy Python package (https://bitbucket.org/gcst/gcpy)

https://bitbucket.org/gcst/csgrid
https://bitbucket.org/gcst/gcpy

• You can reuse your GCHP run directory but MUST do the following
prior to rerunning to avoid a seg fault: make cleanup_output

• Experiment with different run settings in runConfig.sh

• If changing # of cores and/or # of nodes:
– Remember to update runConfig.sh as well as your run script
– Choose NX and NY such that NX by NY/6 is roughly square
– See next slide for an example

Step 9: Rerunning

Example: GCHP with Multiple Nodes
• Run script:

• runConfig.sh:

GCHP Source Code:
ESMF, MAPL, FVdycore

ESMF and transport directories: these are compiled
once and then you shouldn’t need to touch them

This is also compiled once. Most run
directory issue errors will point you here.

Especially here.

GCHP Source Code:
MAPL

Error messages
may lead you
here…

Resource setup
or time issues

Input data
issues

Output data
issues

Tile file issues
(lat-lon <-> CS)

Review your run directory setup before trying to change MAPL code!

GCHP Source Code:
High-level GCHP

Where Input_Opt
variables are broadcast as
constants to all cores Module for init, run, and

finalize methods called in
Chem_GridCompMod.F90
(looks similar to main.F)

Defines what import and internal
states (full cubed_sphere arrays) are
assigned to GEOS-Chem derived
type objects to be processed per
core (e.g. State_Met).

GCHP equivalent of main.F
in that it is where the
actions are executed

Resources

• GCHP Links:
– Main Wiki Page
– Online Tutorial
– v11-02: new features, benchmarks, open and resolved issues
– Working Group and Users
– Timing Tests

• Other Useful Links:
– Interactive construction of a cubed-sphere grid
– FORTRAN tool for regridding between lat-lon and cubed-sphere
– GMAO MAPL User’s Guide (info may be outdated)
– GEOS-5 wiki page for ExtData (info may be outdated)

http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_HP
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_HP
http://wiki.seas.harvard.edu/geos-chem/index.php/Getting_Started_With_GCHP
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_HP_v11-02
http://acmg.seas.harvard.edu/geos/cubed_sphere/CubeSphere_step-by-step.html
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_High_Performance_Working_Group
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_HP_Timing_Tests
http://acmg.seas.harvard.edu/geos/cubed_sphere/CubeSphere_step-by-step.html
https://bitbucket.org/sdeastham/csregridtool
https://geos5.org/wiki/images/f/fa/MAPL_UsersGuide.pdf
https://geos5.org/wiki/index.php?title=Using_the_ExtData_component

	Getting Started with�High Performance GEOS-Chem
	Overview
	What is GCHP and why use it?
	Common Misconceptions about GCHP
	Useful Tip #1: Grid Resolutions
	Useful Tip #2: Resource Allocation
	GCHP Tutorial
	Step 1: Download Source Code
	Step 2: Create a Run Directory
	GCHP Run Directory:�Out-of-the-box Contents
	GCHP Run Directory:�.bashrc Files
	GCHP Run Directory:�Config Files
	GCHP Run Directory:�Run Scripts
	GCHP Run Directory:�Output Data Storage
	GCHP Run Directory:�Utility Scripts
	Step 3: One-time Run Directory Setup
	Step 3: One-time Run Directory Setup
	Step 4: Load GCHP Environment
	Step 5: Compile GCHP
	Step 6: Configure Run
	runConfig.sh:�Default Settings Part 1
	runConfig.sh:�Default Settings Part 2
	Step 7: Run GCHP�(single node)
	Step 8: Analyze Output
	Step 9: Rerunning
	Example: GCHP with Multiple Nodes
	GCHP Source Code: �ESMF, MAPL, FVdycore
	GCHP Source Code: �MAPL
	GCHP Source Code: �High-level GCHP
	Resources

