GEOS-Chem "Classic" 12.0.0 timing results

Bob Yantosca GEOS-Chem Support Team 16 Aug 2018

Timing test configurations

We set up 7-day timing runs with these GEOS-Chem "Classic" 12.0.0 configurations:

```
bpch diagnostics
                      fast-math option
GNU Fortran v7.1 +
                      fast-math option
GNU Fortran v7.1 +
                                             netCDF diagnostics
                                         +
                      default build
                                             bpch diagnostics
GNU Fortran v7.1 +
                      default build
GNU Fortran v7.1 +
                                             netCDF diagnostics
                                         +
Intel Fortran 17.0.4 +
                      default build
                                             bpch diagnostics
                                         +
Intel Fortran 17.0.4+
                      default build
                                             netCDF diagnostics
```

For each configuration 1-6, we submitted jobs using 4, 8, 12, 16, 24, and 32 cores. *NOTE: "fast-math" was activated by hardcoding "-ffast-math" to the makefile.*

GEOS-CHEM TIMERS

Timer name	DD-hh:mm:ss.SSS	Total Seconds
GEOS-Chem	00-01:35:17.875	5717.875
Initialization	00-00:00:06.500	6.500
Timesteps	00-01:35:11.000	5711.000
HEMCO	00-00:46:57.062	2817.062
All chemistry	00-00:27:26.750	1646.750
=> Gas-phase chem	00-00:18:12.500	1092.500
=> FAST-JX photolysis	00-00:02:22.125	142.125
=> All aerosol chem	00-00:06:17.500	377.500
=> Strat chem	00-00:00:13.562	13.562
=> Unit conversions	00-00:00:11.062	11.062
Transport	00-00:05:57.437	357.438
Convection	00-00:05:08.125	308.125
Boundary layer mixing	00-00:05:28.562	328.562
Dry deposition	00-00:00:13.250	13.250
Wet deposition	00-00:02:03.500	123.500
RRTMG	>>>>> THE TIMER D	ID NOT RUN <<<<<
All diagnostics	00-00:00:27.375	27.375
=> HEMCŌ diagnostics	00-00:00:00.062	0.062
=> Binary punch diagnostics	00-00:00:27.312	27.312
Reading met fields	00-00:00:22.562	22.562
Reading restart file	00-00:00:02.437	2.438
Writing restart file	00-00:00:01.625	1.625
Input	00-00:16:25.062	985.062
Output	00-00:00:28.625	28.625
Finalization	00-00:00:00.312	0.312

Time spent per operation

We used the output of the GEOS-Chem timers to determine the approximate amount of time that was spent in each operation.

The GEOS-Chem timers are turned on by compiling with option TIMERS=1. Results are printed at the end of the simulation log file.

Profiling with e.g. the TAU performance analyzer will always be more accurate. But the GEOS-Chem timers are sufficient to determine if there are operations that do not scale well.

Scalability across cores

Scalability: 7-day timing runs with GEOS-Chem 12.0.0

■ GNU v7.1 BPCH FAST

■ GNU v7.1 NC FAST

O GNU v7.1 BPCH

GNU v7.1 NC

▲ IFORT 17 BPCH

▲ IFORT 17 NC

Takeaways:

netCDF diags incur more overhead than BPCH diags (I/O via library)

gfortran + fast-math + netCDF diags is comparable to ifort + netCDF up to about 24 cores

ALSO NOTE: A few runs were likely affected by disk issues on Odyssey: Gfortran + netCDF @ 16 cores Gfortran + bpch @ 12 cores Gfortran + bpch + fast math @ 16 cores

Scalability: 7-day timing runs with GEOS-Chem 12.0.0 (truncated Y-axis)

Here is a view of the same plot on the

preceding slide.

The Y-axis range has been truncated to better show the differences between runs.

Time spent in each operation:

Reference run: v11-02c

GNU Fortran v7.1 + fast math + bpch diagnostics

Time spent in each operation:

Time spent in each operation: gfortran + bpch diagnostics + fast math

Time spent in each operation: gfortran + bpch diagnostics + fast math (truncated Y-axis)

Percent speedup when switching from 4 to 16 cores and from 4 to 32 cores (gfortran + bpch diags + fast math)

We will show the same plots for the other timing test configurations...

GNU Fortran v7.1 + fast math + netCDF diagnostics

Time spent in each operation:

Time spent in each operation: gfortran + netCDF diagnostics + fast math

Time spent in each operation: gfortran + netCDF diagnostics + fast math (truncated Y-axis)

Percent speedup when switching from 4 to 16 cores and from 4 to 32 cores (gfortran + netCDF diags + fast math)

GNU Fortran v7.1 + default build + bpch diagnostics

Time spent in each operation:

Time spent in each operation: gfortran + bpch diagnostics

Time spent in each operation: gfortran + bpch diagnostics (truncated Y-axis)

Percent speedup when switching from 4 to 16 cores and from 4 to 32 cores (gfortran + bpch diagnostics)

GNU Fortran v7.1 + default build + netCDF diagnostics

Time spent in each operation:

Time spent in each operation: gfortran + netCDF diagnostics

Time spent in each operation: gfortran + netCDF diagnostics (truncated Y-axis)

Percent speedup when switching from 4 to 16 cores and from 4 to 32 cores (gfortran + netCDF diagnostics)

Intel Fortran 17.0.4 + default build + bpch diagnostics

Time spent in each operation:

Time spent in each operation: ifort + bpch diagnostics

Time spent in each operation: ifort + bpch diagnostics (truncated Y-axis)

Percent speedup when switching from 4 to 16 cores and from 4 to 32 cores (ifort + bpch diagnostics)

Time spent in each operation: Intel Fortran 17.0.4 + default build + netCDF diagnostics

Time spent in each operation: ifort + netCDF diagnostics

Time spent in each operation: ifort + netCDF diagnostics (truncated Y-axis)

Percent speedup when switching from 4 to 16 cores and from 4 to 32 cores (ifort + netCDF diagnostics)

