GEOS-Chem: looking ahead

Daniel J. Jacob
GEOS-Chem model scientist
October 2017
GEOS-Chem: a large worldwide grass-roots community

http://www.geos-chem.org/geos_people.html

Users
Steering Committee
Support Team

Over 120 user groups in 25 countries

ISI publications with ‘GEOS-Chem’ in abstract

- IGCs at Harvard every 2 years
- First GC Asia, GC Europe meetings to be held in 2018 – alternate years with IGCs?

GEOS-Chem Community Mission: to advance understanding of human and natural influences on the environment through a comprehensive, state-of-the-science, readily accessible global model of atmospheric composition
GEOS-Chem scientific development is driven by its users

Users
- report bugs
- develop new code and data sets

Working Groups
- set model development priorities: IGCs!

GEOS-Chem Steering Committee
- Model scientists, WG chairs,
- Model engineer, GMAO reps
- implements & benchmarks new developments,
- corrects bugs
- oversees implementation of priorities,
- evaluates benchmarks
- supports users

GEOS-Chem Support Team
- Harvard, Dalhousie, CU, CSU
- writes documentation

new model version
(V11-01 released in January 2017, now working on V11-02)
Major effort in software engineering in recent years: necessary to bring GEOS-Chem into the 2020s

- HEMCO emissions pre-processor [Keller et al., 2014]
 o emissions and other data now added, combined, scaled without editing source code
- GEOS-Chem operation on 1-D columns for any grid selected at runtime [Long et al., 2015]
 o enables use of meteorological fields produced on any grid
 o facilitates distributed-memory parallelization
- Reconfiguration of chemical module (FlexChem) (Mike Long and GCST)
 o Facilitates changes in chemical mechanism
 o Makes GEOS-Chem compatible with its adjoint
 o Choice of chemical solvers
- ESMF compatibility [Long et al., 2015]
 o enables use of GEOS-Chem as chemical module for Earth System Models (ESMs)
 o enables MPI parallelization
- NetCDF I/O (GCST)
 o self-describing, selective-read format for input/output files, essential for GCHP
- GCHP [Eastham et al., 2017]
 o massively parallel hi-res simulations using cubed-sphere GEOS data and ESMF
 o more accurate transport
 o gateway to stretched-grid capability
- Compatibility with open-access software gfort and Python (GCST, Dan Rothenberg…)
 o no need to purchase expensive Intel Fortran and IDL licenses
 o enables cloud-based GEOS-Chem computing
- Running GEOS-Chem on the cloud [Zhuang et al., 2018]
 o Opens GEOS-Chem access to a wide user base
 o Provides cheap easy access to occasional users
 o Establishes standard version of model
GEOS-Chem is open-source, licensed software

• Having an open-source code is essential for
 o Academic publications
 o Use in policy-relevant documents
 o Creation of a large user community

• Code is licensed as of September 2017 (Seb Eastham and GCST)
 o Identifies the model developers (a long list!) as owners of the model
 o States freedom of use and distribution
 o Establishes that all code in GEOS-Chem is free to use
 o Protects us against nightmare scenarios
 o Provides tangible credit to code development

• Attribute a DOI to new versions (in the works; Jenny Fisher and GCST)
 o Provides a reference to that version
 o Needed to satisfy ‘code availability’ requirement in publications
Looking ahead to GEOS-Chem v11-02
In development; expect public release in early 2018

- V11-02a: chemical updates, emission updates, bug fixes *(US EPA, U. York, CSU, UW, Duke, Dalhousie…)*

- V11-02b: GCHP capability *(GEOS-Chem Support Team)*

- V11-02d: comprehensive halogen chemistry *(U. York, U. Copenhagen, MIT, Harvard)*

In the pipeline: flux diagnostics, NetCDF diagnostics (GCST), new emission inventories, scale-independent emissions (Dalhousie, PKU, U. Rochester, MIT), flexible nesting capability (Jiawei Zhuang),…
Looking to the future: GCHP

• GCHP is mature – so how do we get users to use it?
 o Improve diagnostics: current work to update diagnostics to NetCDF
 o Get GMAO to provide operational cubed-sphere archive: soon, we are told!
 o At that point lat-lon data will not be produced at native resolution anymore (we will still have lat-lon for MERRA-2)
 o Produce journal publication documenting GCHP
 o Getting the adjoint and specialty simulations to work with GCHP

• There is absolutely no plan to pull the plug on GEOS-Chem Classic (GCC)
 o GCC and GCHP will continue to be developed together for foreseeable future
 o The reliance of the GEOS-Chem community on GCC is fully recognized
 o GCHP may become eventually more scientifically attractive because of better transport, stretched-grid options…
 o One can imagine a distant future where the GEOS-Chem community has gravitated to GCHP and GCC becomes obsolete, but that future is distant.
Looking to the future: GEOS-Chem on the cloud

- Great work by Jiawei Zhuang in demonstrating the capability
 - Lots of excitement in GEOS-Chem community
 - Enabled by Gnu fortran, GCPy diagnostics
 - Could greatly expand usage
 - Could facilitate model fidelity
- Current bottleneck: making GEOS data available through the cloud
 - Wish to have data posted/downloadable for free, users pay for CPU cycles
 - Currently in negotiation between Amazon and Harvard
Looking to the future: GEOS-Chem as ESM component

• GEOS-Chem “chemistry-at-large module” is in place in GEOS ESM (Keller, Long)
 o All local operations $dC/dt = P – L$ are performed by GEOS-Chem module
 o Currently applied to AQ forecasts
 o Ongoing comparisons of strat chem with GMI
 o Need to establish quality of aerosol simulation
 o Need to apply it to chemical data assimilation – will require improvement in computational performance: faster chemical solvers, coarser chemical grid?

• GEOS-Chem incorporated in BCC model (Xiao Lu, Lin Zhang)
 o Enthusiasm at BCC
 o Next step is to evaluate simulation
 o First application priority: S2S AQ predictions
 o Second application priority: CMIP6 simulations

• GEOS-Chem chemistry module to go into ECMWF Copernicus (Seb Eastham)
 o Chemistry separate from emissions, deposition, radiation – not ideal!

• Plan to implement GEOS-Chem as module into CESM2
 o Interest of Seb Eastham and Mike Long, still in take-off mode

• Plan to implement GEOS-Chem as module in WRF-Chem
 o Interest of May Fu, still in take-off mode
Looking to the future: dealing with increasing resolution

• As resolution of the model increases, the off-line CTM approach becomes more challenging [Yu et al., 2017]
 o Need to increase both spatial and temporal resolution of met archive
 o As ESM moves to cloud-resolving scales, convection is increasingly resolved as transient advection missing from the met archive – needs to be added to CTM
 o As resolution increases, chemical simulations will eventually need to be done on-line – but what is the threshold?
 o In any case, there will be sustained demand for off-line simulations at coarser resolution – but this will require adjusted met fields
 o Envision a future where user-initiated developments will be done in the coarse-resolution CTM, to serve high-performance applications on-line
Looking to the future: balancing community needs for innovation and stability

GEOS-Chem Community Mission: to advance understanding of human and natural influences on the environment through a comprehensive, state-of-the-science, readily accessible global model of atmospheric composition

- GEOS-Chem is unique among atmchem models in its ease of use; allows atm chemists with low computing resources to contribute scientific innovation
- But they wouldn’t use it if it didn’t stay at the cutting edge of science – meaning that we have to continuously innovate in both the science and the software engineering needed for that science
- But somebody’s “cutting edge” is someone else’s “unnecessary update” and users are stressed when the model keeps changing
- This is particularly the case for specialty simulations that get broken in model updates
- Also need to be careful before retiring existing capabilities (for example, we plan to keep old non-NetCDF diagnostics in v11-2)
- On the other hand, continued support for older versions unduly stresses the GCST, and GEOS-Chem is intended to be a research model with no backward compatibility commitment
- Counting on GCSC and Working Groups to provide guidance in striking a balance between innovation and stability